Skip to main content
Log in

Theoretical rates of pulsation period change in the Galactic Cepheids

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Theoretical estimates of the rates of radial pulsation period change in Galactic Cepheids with initial masses 5.5 M M ZAMS ≤ 13 M , chemical composition X = 0.7, Z = 0.02 and periods 1.5 day ≤ Π ≤ 100 day are obtained from consistent stellar evolution and nonlinear stellar pulsation computations. Pulsational instability was investigated for three crossings of the instability strip by the evolutionary track in the HR diagram. The first crossing occurs at the post-main sequence helium core gravitational contraction stage which proceeds in the Kelvin-Helmholtz timescale whereas the second and the third crossings take place at the evolutionary stage of thermonuclear core helium burning. During each crossing of the instability strip the period of radial pulsations is a quadratic function of the stellar evolution time. Theoretical rates of the pulsation period change agree with observations but the scatter of observational estimates of \(\dot \Pi\) noticeably exceeds the width of the band \(\left( {\delta \log \left| {\dot \Pi } \right| \leqslant 0.6} \right)\) confining evolutionary tracks in the period-period change rate diagram. One of the causes of the large scatter with very high values of \(\dot \Pi\) in Cepheids with increasing periods might be the stars that cross the instability strip for the first time. Their fraction ranges from 2% for M ZAMS = 5.5 M to 9% for M ZAMS = 13 M and variables α UMi and IX Cas seem to belong to such objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Angulo, M. Arnould, M. Rayet, et al., Nucl. Phys. A 656, 3 (1999).

    Article  ADS  Google Scholar 

  2. R. Baranowski, R. Smolec, W. Dimitrov, et al., Mon. Not. R. Astron. Soc. 396, 2194 (2009).

    Article  ADS  Google Scholar 

  3. L. N. Berdnikov and D. G. Turner, Astron. Astrophys. Trans. 23, 123 (2004).

    Article  ADS  Google Scholar 

  4. L. N. Berdnikov, E. N. Pastukhova, N. A. Gorynya, et al., Astron. Astrophys. Trans. 25, 221 (2006).

    Article  ADS  Google Scholar 

  5. L. N. Berdnikov and E. N. Pastukhova, Astron. Zh. 89, 931 (2012) [Astron. Rep. 56, 843 (2012)].

    ADS  Google Scholar 

  6. E. Böhm-Vitense, Zeitschrift für Astrophys. 46, 108 (1958)

    ADS  Google Scholar 

  7. Yu. A. Fadeyev, Pis’ma Astron. Zh 37, 440 (2011) [Astron. Lett. 37, 403 (2011)].

    ADS  Google Scholar 

  8. Yu. A. Fadeyev, Pis’ma Astron. Zh 38, 295 (2012) [Astron. Lett. 38, 260 (2012)].

    ADS  Google Scholar 

  9. Yu. A. Fadeyev, Pis’ma Astron. Zh. 39, 342 (2013a) [Astron.Lett. 39, 306 (2013a)].

    ADS  Google Scholar 

  10. Yu. A. Fadeyev, Pis’ma Astron. Zh. 39, 829 (2013b) [Astron.Lett. 39, 746 (2013b)].

    Google Scholar 

  11. L. G. Henyey, J. E. Forbes, and N. L. Gould, Astrophys. J. 139, 306 (1964).

    Article  ADS  MATH  Google Scholar 

  12. E. Hertzsprung, Astron. Nachr. 210, 17 (1919).

    Article  ADS  Google Scholar 

  13. E. Hofmeister, Zeitschrift für Astrophys. 65, 1164 (1967).

    ADS  Google Scholar 

  14. E. Hofmeister, R. Kippenhahn, and A. Weigert, Zeitschrift für Astrophys. 60, 57 (1964).

    ADS  Google Scholar 

  15. I. Iben, Astrophys. J. 143, 483 (1966).

    Article  ADS  Google Scholar 

  16. Z. Kolláth, J. R. Buchler, R. Szábo, et al., Astron. Astrophys. 385, 932 (2002).

    Article  ADS  Google Scholar 

  17. R. Kuhfuß, 1986, Astron. Astrophys. 160, 116 (1986).

    ADS  MATH  Google Scholar 

  18. N. Langer, K. J. Fricke, and D. Sugimoto, Astron. Astrophys. 126, 207 (1983).

    ADS  Google Scholar 

  19. E. A. Olivier and P. R. Wood, Mon. Not. R. Astron. Soc. 362, 1396 (2005).

    Article  ADS  Google Scholar 

  20. P. P. Parenago, Perem. Zv. 11, 236 (1956).

    Google Scholar 

  21. P. Pietrukowicz, Acta Astron. 51, 247 (2001).

    ADS  Google Scholar 

  22. G. Schaller, D. Schaerer, G. Meynet, et al., Astron. Astrophys. Suppl. Ser. 96, 269 (1992).

    ADS  Google Scholar 

  23. R. Smolec and P. Moskalik, Acta Astron. 58, 193 (2008).

    ADS  Google Scholar 

  24. R. Szabó, J. R. Buchler, and J. Bartee, Astrophys. J. 667, 1150 (2007).

    Article  ADS  Google Scholar 

  25. D. G. Turner, J. Am. Associat. Var. Star Observ. 26, 101 (1998).

    ADS  Google Scholar 

  26. D. G. Turner and L. N. Berdnikov, Astron. Astrophys. 423, 335 (2004).

    Article  ADS  Google Scholar 

  27. D. Turner, M. Abdel-Sabour Abdel-Latif, and L. N. Berdnikov, Publ. Astron. Soc. Pacific 118, 410 (2006).

    Article  ADS  Google Scholar 

  28. G. Wuchterl and M. U. Feuchtinger, Astron. Astrophys. 340, 419 (1998).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Fadeyev.

Additional information

Original Russian Text © Yu.A. Fadeyev, 2014, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2014, Vol. 40, No. 5, pp. 341–348.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadeyev, Y.A. Theoretical rates of pulsation period change in the Galactic Cepheids. Astron. Lett. 40, 301–307 (2014). https://doi.org/10.1134/S1063773714050028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773714050028

Keywords

Navigation