Skip to main content
Log in

Wavelength dependence of the polarization of radiation from an accretion disk: Testing accretion disk models

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We show that a fundamental choice between various models of an accretion disk around a black hole can be made based on the spectral wavelength distribution of the polarization. This conclusion is based on the possibility of comparing the observed spectral distribution of the polarization with its theoretical values obtained in various accretion disk models. The expected power-law wavelength (frequency) dependences of the polarization for various accretion disk models known in the literature are presented in the table.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Abbassi, J. Ghanbari, and M. Ghasemnezhad, Mon. Not. R. Astron. Soc. 409, 1113 (2010).

    Article  ADS  Google Scholar 

  2. P. Abolmasov and N. I. Shakura, Astron. Nachr. 330, 737 (2009).

    Article  ADS  MATH  Google Scholar 

  3. P. Abolmasov and N. I. Shakura, Mon. Not. R. Astron. Soc. 423, 676 (2012).

    Article  ADS  Google Scholar 

  4. V. S. Beskin, Phys. Usp. 53, 1199 (2010).

    Article  ADS  Google Scholar 

  5. G. S. Bisnovatyi-Kogan and A. A. Ruzmaikin, Astrophys. Space Sci. 42, 401 (1976).

    Article  ADS  Google Scholar 

  6. D.-F. Bu, F. Yuan, M. Wu, and J. Cuadra, Mon.Not. R. Astron. Soc. 434, 1692 (2013).

    Article  ADS  Google Scholar 

  7. S. Chandrasekhar, Radiative Transfer (Clarendon Press, Oxford, 1950).

    MATH  Google Scholar 

  8. Yu. N. Gnedin and N. A. Silant’ev, Astrophys. Space Phys. 10, 1 (1997).

    Google Scholar 

  9. Yu. N. Gnedin, S. D. Buliga, N. A. Silant’ev, T. M. Natsvlishvili, and M. Yu. Piotrovich, Astrophys. Space Sci. 342, 137 (2012).

    Article  ADS  Google Scholar 

  10. N. R. Ikhsanov, L. A. Pustilnik, and N. G. Beskrovnaya, J. Phys.: Conf. Ser. 372, 1 (2012).

    Google Scholar 

  11. M. Livio, ASP Conf. Ser. 224, 225 (2001).

    ADS  Google Scholar 

  12. J.-F. Lu, S.-L. Li, and W.-M. Gu, Mon. Not. R. Astron. Soc. 352, 147 (2004).

    Article  ADS  Google Scholar 

  13. D. L. Meier, Astrophys. J. Suppl. Ser. 300, 55 (2005).

    Google Scholar 

  14. R. Narayan, Astrophys. J. 536, 663 (2000).

    Article  ADS  Google Scholar 

  15. R. Narayan, R. Mahadevan, and E. Quataert, in Theory of Black Hole Accretion Disks, Ed. by M. A. Abramowicz, G. Bjornsson, and J. E. Pringle (Cambridge Univ. Press, 1998).

  16. I. D. Novikov and K. S. Thorne, in Black Holes, (Les Astres Occlus), Astropys. of Black Holes (Gordon and Breach, Paris, 1973), p. 343.

    Google Scholar 

  17. E. C. Ostriker, Astrophys. J. 486, 291 (1997).

    Article  ADS  Google Scholar 

  18. J. van Paradijs, Astrophys. J. 464, L139 (1996).

    Article  Google Scholar 

  19. V. I. Pariev, E. G. Blackman, and S. A. Boldyrev, Astron. Astrophys. 407, 403 (2003).

    Article  ADS  Google Scholar 

  20. R. F. Penna, A. Sadowski, and J. C. McKinney, Mon. Not. R. Astron. Soc. 420, 684 (2012).

    Article  ADS  Google Scholar 

  21. S. Poindexter, N. Morgan, and C. S. Kochanek, Astrophys. J. 673, 34 (2008).

    Article  ADS  Google Scholar 

  22. J. E. Pringle and M. J. Rees, Astron. Asptrophys. 21, 1 (1972).

    ADS  Google Scholar 

  23. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  24. V. F. Shvartsman, Sov. Astron. 15, 377 (1971).

    ADS  Google Scholar 

  25. N. A. Silant’ev, Astron. Astrophys. 383, 326 (2002).

    Article  ADS  Google Scholar 

  26. N. A. Silant’ev, Astron. Astrophys. 433, 1117 (2005).

    Article  ADS  Google Scholar 

  27. N. A. Silant’ev, M. Yu. Piotrovich, Yu. N. Gnedin, and T. M. Natsvlishvili, Astron. Astrophys. 507, 171 (2009).

    Article  ADS  Google Scholar 

  28. N. A. Silant’ev, M. Yu. Piotrovich, Yu. N. Gnedin, and T. M. Natvlishvili, Astron. Rep. 55, 683 (2011).

    Article  ADS  Google Scholar 

  29. N. A. Silant’ev, Yu. N. Gnedin, S. D. Buliga, et al., Astrophys. Bull. 68, 14 (2013).

    Article  ADS  Google Scholar 

  30. V. V. Sobolev, Uchen. Zap. Lenigr. Univ. 116, 1 (1949).

    Google Scholar 

  31. H. C. Spruit, in Cosmical Magnetism, NATO ASI Ser. C, Vol. 422 (Kluwer Academic, 1994), p. 33.

    Article  ADS  Google Scholar 

  32. F. G. Xie and F. Yuan, Astrophys. J. 681, 499 (2008).

    Article  ADS  Google Scholar 

  33. D. Zhang and Z. B. Dai, Astrophys. J. 703, 461 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Gnedin.

Additional information

Original Russian Text © S.D. Buliga, Yu.N. Gnedin, T.M. Natsvlishvili, M.Yu. Piotrovich, N.A. Silant’ev, 2014, published in Pis’ma v Astronomicheskiı Zhurnal, 2014, Vol. 40, No. 4, pp. 213–220.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buliga, S.D., Gnedin, Y.N., Natsvlishvili, T.M. et al. Wavelength dependence of the polarization of radiation from an accretion disk: Testing accretion disk models. Astron. Lett. 40, 185–192 (2014). https://doi.org/10.1134/S1063773714030049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773714030049

Keywords

Navigation