Skip to main content
Log in

Luminosity Outbursts in Interacting Protoplanetary Systems

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

FU Orionis type objects (fuors) are characterized by rapid (tens to hundreds years) episodic outbursts, during which the luminosity increases by orders of magnitude. One of the possible causes of such events is a close encounter between stars and protoplanetary disks. Numerical simulations show that the fuor-like outburst ignition requires a very close encounter ranging from a few to a few tens of astronomical units. In contrast, the observed stellar objects in fuor binaries are usually hundreds of astronomical units apart. Simple mathematical estimates show that if such a close approach took place, the binary stellar components would have an unrealistic relative velocity, at least an order of magnitude greater than the observed velocity dispersion in young stellar clusters. Thus, the bursts are either triggered with a certain delay after passage of the periastron or their ignition does not necessary require a close encounter and hence the outburst is not caused by the primordial gravitational perturbation of the protoplanetary disk. In this work, an encounter of a star surrounded by a protoplanetary disk with a diskless external stellar object was modeled using numerical hydrodynamics simulations. We showed that even fly-bys with a relatively large periastron (at least 500 AU) can result in fuor-like outbursts. Moreover, the delay between the periastron passage and the burst ignition can reach several kyr. It was shown for the first time by means of numerical modeling that the perturbation of the disk caused by the external object can trigger a cascade process, which includes the development of the thermal instability in the innermost disk followed by the magneto-rotational instability ignition. Because of the sequential development of these instabilities, the rapid increase in the accretion rate occurs, resulting in the luminosity increase by more than two orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. M. Audard, P. Ábrahám, M. M. Dunham, J. D. Green, et al., in Protostars and Planets VI, Ed. by H. Beuther, R. S. Klessen, C. P. Dullemond, and T. Henning (Univ. Arizona Press, Tucson, 2014), p. 387; arXiv: 1401.3368 [astro-ph.SR].

  2. T. Magakian, T. Movsessian, and H. Andreasyan, Acta Astrophys. Taurica 3 (3), 4 (2022).

    Google Scholar 

  3. S. J. Kenyon, in The Origin of Stars and Planetary Systems, Ed. by C. J. Lada and N. D. Kylafis, NATO ASI Ser. C 540, 613 (1999); arXiv: astro-ph/9904035.

  4. E. I. Vorobyov and S. Basu, Astrophys. J. 805, 115 (2015); arXiv: 1503.07888 [astro-ph.SR].

    Article  ADS  Google Scholar 

  5. A. Mercer and D. Stamatellos, Mon. Not. R. Astron. Soc. 465, 2 (2017); arXiv: 1610.08248 [astro-ph.EP].

    Article  ADS  Google Scholar 

  6. E. I. Vorobyov, Y. N. Pavlyuchenkov, and P. Trinkl, Astron. Rep. 58, 522 (2014).

    Article  ADS  Google Scholar 

  7. E. I. Vorobyov, V. G. Elbakyan, M. Takami, and H. B. Liu, Astron. Astrophys. 643, A13 (2020); arXiv: 2009.01888 [astro-ph.SR].

    Article  ADS  Google Scholar 

  8. R. Visser, E. A. Bergin, and J. K. Jørgensen, Astron. Astrophys. 577, A102 (2015); arXiv: 1503.04951 [astro-ph.SR].

    Article  ADS  Google Scholar 

  9. C. Rab, V. Elbakyan, E. Vorobyov, M. Güdel, et al., Astron. Astrophys. 604, A15 (2017); arXiv: 1705.03946 [astro-ph.SR].

    Article  Google Scholar 

  10. T. Molyarova, V. Akimkin, D. Semenov, P. Árahám, T. Henning, Á. Kóspál, E. Vorobyov, and D. Wiebe, Astrophys. J. 866, 46 (2018); arXiv: 1809.01925 [astro-ph.EP].

    Article  ADS  Google Scholar 

  11. D. S. Wiebe, T. S. Molyarova, V. V. Akimkin, E. I. Vorobyov, and D. A. Semenov, Mon. Not. R. Astron. Soc. 485, 1843 (2019); arXiv: 1902.07475 [astro-ph.EP].

    Article  ADS  CAS  Google Scholar 

  12. E. I. Vorobyov, I. Baraffe, T. Harries, and G. Chabrier, Astron. Astrophys. 557, A35 (2013); arXiv: 1307.2271 [astro-ph.SR].

    Article  ADS  Google Scholar 

  13. A. Banzatti, P. Pinilla, L. Ricci, K. M. Pontoppidan, T. Birnstiel, and F. Ciesla, Astrophys. J. Lett. 815, L15 (2015); arXiv: 1511.06762 [astro-ph.EP].

    Article  ADS  Google Scholar 

  14. D. Schoonenberg and C. W. Ormel, Astron. Astrophys. 602, A21 (2017); arXiv: 1702.02151 [astro-ph.EP].

    Article  ADS  Google Scholar 

  15. E. I. Vorobyov, A. M. Skliarevskii, T. Molyarova, V. Akimkin, et al., Astron. Astrophys. 658, A191 (2022); arXiv: 2112.06004 [astro-ph.EP].

    Article  Google Scholar 

  16. E. I. Vorobyov, V. G. Elbakyan, H. B. Liu, and M. Takami, Astron. Astrophys. 647, A44 (2021); arXiv: 2101.01596 [astro-ph.SR].

    Article  ADS  CAS  Google Scholar 

  17. M. S. Connelley and B. Reipurth, Astrophys. J. 861, 145 (2018); arXiv: 1806.08880 [astro-ph.SR].

    Article  ADS  Google Scholar 

  18. P. J. Armitage, M. Livio, and J. E. Pringle, Mon. Not. R. Astron. Soc. 324, 705 (2001); arXiv: astro-ph/0101253.

    Article  ADS  CAS  Google Scholar 

  19. E. I. Vorobyov, S. Khaibrakhmanov, S. Basu, and M. Audard, Astron. Astrophys. 644, A74 (2020); arXiv: 2011.00951 [astro-ph.SR].

    Article  ADS  CAS  Google Scholar 

  20. E. I. Vorobyov and S. Basu, Astrophys. J. 719, 1896 (2010); arXiv: 1007.2993 [astro-ph.SR].

    Article  ADS  Google Scholar 

  21. M. Küffmeier, S. Frimann, S. S. Jensen, and T. Haugbølle, Mon. Not. R. Astron. Soc. 475, 2642 (2018); arXiv: 1710.00931 [astro-ph.SR].

    Article  ADS  Google Scholar 

  22. C. P. Dullemond, M. Küffmeier, F. Goicovic, M. Fukagawa, V. Oehl, and M. Kramer, Astron. Astrophys. 628, A20 (2019); arXiv: 1911.05158 [astro-ph.EP].

    Article  ADS  CAS  Google Scholar 

  23. T. V. Demidova and V. P. Grinin, Astrophys. J. 953, 38 (2023); arXiv: 2308.04936 [astro-ph.SR].

    Article  ADS  Google Scholar 

  24. S. Nayakshin and G. Lodato, Mon. Not. R. Astron. Soc. 426, 70 (2012); arXiv: 1110.6316 [astro-ph.EP].

    Article  ADS  CAS  Google Scholar 

  25. K. R. Bell and D. N. C. Lin, Astrophys. J. 427, 987 (1994); arXiv: astro-ph/9312015.

    Article  ADS  Google Scholar 

  26. L. A. Maksimova, Y. N. Pavlyuchenkov, and A. V. Tutukov, Astron. Rep. 64, 815 (2020); arXiv: 2009.07750 [astro-ph.SR].

    Article  ADS  Google Scholar 

  27. I. Bonnell and P. Bastien, Astrophys. J. Lett. 401, L31 (1992).

    Article  ADS  CAS  Google Scholar 

  28. R. Dong, H. B. Liu, N. Cuello, C. Pinte, et al., Nat. Astron. 6, 331 (2022); arXiv: 2201.05617 [astro-ph.SR].

    Article  ADS  Google Scholar 

  29. T. L. Beck and C. Aspin, Astron. J. 143 (3), 55 (2012).

    Article  ADS  Google Scholar 

  30. S. Pérez, A. Hales, H. B. Liu, Z. Zhu, et al., Astrophys. J. 889, 59 (2020); arXiv: 1911.11282 [astro-ph.EP].

    Article  ADS  Google Scholar 

  31. E. M. A. Borchert, D. J. Price, C. Pinte, and N. Cuello, Mon. Not. R. Astron. Soc. 510, L37 (2022); arXiv: 2111.12723 [astro-ph.GA].

    Article  ADS  Google Scholar 

  32. N. Cuello, F. Ménard, and D. J. Price, Eur. Phys. J. Plus 138, 11 (2023); arXiv: 2207.09752 [astro-ph.EP].

    Article  Google Scholar 

  33. H. B. Liu, E. I. Vorobyov, R. Dong, M. M. Dunham, et al., Astron. Astrophys. 602, A19 (2017); arXiv: 1701.06531 [astro-ph.SR].

    Article  Google Scholar 

  34. E. I. Vorobyov, V. Akimkin, O. Stoyanovskaya, Y. Pavlyuchenkov, and H. B. Liu, Astron. Astrophys. 614, A98 (2018); arXiv: 1801.06898 [astro-ph.EP].

    Article  ADS  Google Scholar 

  35. O. P. Stoyanovskaya, F. A. Okladnikov, E. I. Vorobyov, Y. N. Pavlyuchenkov, and V. V. Akimkin, Astron. Rep. 64, 107 (2020); arXiv: 2102.09155 [astro-ph.EP].

    Article  ADS  Google Scholar 

  36. T. Molyarova, E. I. Vorobyov, V. Akimkin, A. Skliarevskii, D. Wiebe, and M. Güdel, Astrophys. J. 910, 153 (2021); arXiv: 2103.06045 [astro-ph.EP].

    Article  ADS  CAS  Google Scholar 

  37. C. B. Henderson, Am. Inst. Aeronaut. Astronaut. J. 14, 707 (1976).

    Article  Google Scholar 

  38. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  39. J. S. Dohnanyi, J. Geophys. Res. 74, 2531 (1969).

    Article  ADS  Google Scholar 

  40. C. F. Gammie, Astrophys. J. 457, 355 (1996).

    Article  ADS  Google Scholar 

  41. J. Bae, L. Hartmann, Z. Zhu, and R. P. Nelson, Astrophys. J. 795, 61 (2014); arXiv: 1409.3891 [astro-ph.SR].

    Article  ADS  Google Scholar 

  42. K. Kadam, E. Vorobyov, Z. Regály, Á. Kóspál, and P. Ábrahám, Astrophys. J. 882, 96 (2019); arXiv: 1908.02515 [astro-ph.SR].

    Article  ADS  CAS  Google Scholar 

  43. E. I. Vorobyov, M. E. Steinrueck, V. Elbakyan, and M. Guedel, Astron. Astrophys. 608, A107 (2017); ar-Xiv: 1708.07166 [astro-ph.SR].

    Article  ADS  Google Scholar 

  44. E. M. A. Borchert, D. J. Price, C. Pinte, and N. Cuello, Mon. Not. R. Astron. Soc. 517, 4436 (2022); arXiv: 2210.01143 [astro-ph.SR].

    Article  ADS  Google Scholar 

  45. Z. Regály and E. Vorobyov, Mon. Not. R. Astron. Soc. 471, 2204 (2017); arXiv: 1709.08334 [astro-ph.SR].

    Article  ADS  Google Scholar 

  46. K. Kadam, E. Vorobyov, Z. Regály, Á. Kóspál, and P. Ábrahám, Astrophys. J. 895, 41 (2020); arXiv: 2005.03578 [astro-ph.SR].

    Article  ADS  CAS  Google Scholar 

  47. E. I. Vorobyov, V. G. Elbakyan, A. Johansen, M. Lambrechts, A. M. Skliarevskii, and O. P. Stoyanovskaya, Astron. Astrophys. 670, A81 (2023); arXiv: 2212.01023 [astro-ph.EP].

    Article  ADS  Google Scholar 

  48. A. Labdon, S. Kraus, C. L. Davies, A. Kreplin, et al., Astron. Astrophys. 646, A102 (2021); arXiv: 2011.07865 [astro-ph.SR].

    Article  Google Scholar 

  49. F. Lykou, P. Ábrahám, L. Chen, J. Varga, et al., Astron. Astrophys. 663, A86 (2022); arXiv: 2205.10173 [astro-ph.SR].

    Article  CAS  Google Scholar 

  50. L. Hartmann, Accretion Processes in Star Formation (Cambridge Univ. Press, Cambridge, UK, 1998).

    Google Scholar 

  51. A. M. Skliarevskii, Y. N. Pavlyuchenkov, and E. I. Vorobyov, Astron. Rep. 65, 170 (2021); arXiv: 2104.10787 [astro-ph.EP].

    Article  ADS  Google Scholar 

  52. E. Kawazoe and S. Mineshige, Publ. Astron. Soc. Jpn. 45, 715 (1993).

    ADS  Google Scholar 

  53. P. D’Alessio, Ph.D. Thesis (UNAM’s Inst. Astron., 1996).

  54. R. Dong, E. Vorobyov, Y. Pavlyuchenkov, E. Chiang, and H. B. Liu, Astrophys. J. 823, 141 (2016); arXiv: 1603.01618 [astro-ph.SR].

    Article  ADS  Google Scholar 

  55. K. Zhang, G. A. Blake, and E. A. Bergin, Astrophys. J. Lett. 806, L7 (2015); arXiv: 1505.00882 [astro-ph.EP].

    Article  ADS  Google Scholar 

  56. P. Pinilla, A. Pohl, S. M. Stammler, and T. Birnstiel, Astrophys. J. 845, 68 (2017); arXiv: 1707.02321 [astro-ph.EP].

    Article  ADS  Google Scholar 

  57. G. Picogna and W. Kley, Astron. Astrophys. 584, A110 (2015); arXiv: 1510.01498 [astro-ph.EP].

    Article  ADS  Google Scholar 

  58. R. Dong, Z. Zhu, and B. Whitney, Astrophys. J. 809, 93 (2015); arXiv: 1411.6063 [astro-ph.EP].

    Article  ADS  Google Scholar 

  59. N. Dzyurkevich, M. Flock, N. J. Turner, H. Klahr, and T. Henning, Astron. Astrophys. 515, A70 (2010); arXiv: 1002.2521 [astro-ph.SR].

    Article  ADS  Google Scholar 

  60. M. Flock, J. P. Ruge, N. Dzyurkevich, T. Henning, H. Klahr, and S. Wolf, Astron. Astrophys. 574, A68 (2015); arXiv: 1411.2736 [astro-ph.EP].

    Article  ADS  Google Scholar 

  61. K. Kadam, E. Vorobyov, and S. Basu, Mon. Not. R. Astron. Soc. 516, 4448 (2022); arXiv: 2208.12105 [astro-ph.EP].

    Article  ADS  Google Scholar 

  62. D. Forgan and K. Rice, Mon. Not. R. Astron. Soc. 402, 1349 (2010); arXiv: 0911.0531 [astro-ph.SR].

    Article  ADS  Google Scholar 

  63. C. J. Clarke and J. E. Pringle, Mon. Not. R. Astron. Soc. 249, 584 (1991).

    Article  ADS  Google Scholar 

  64. G. Bourdarot, J.-P. Berger, G. Lesur, K. Perraut, et al., arXiv: 2304.13414 [astro-ph.SR] (2023).

  65. K. Kadam, E. Vorobyov, and Á. Kóspál, Astrophys. J. 909, 31 (2021); arXiv: 2101.05764 [astro-ph.SR].

    Article  ADS  CAS  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation, State assignment in the field of scientific activity no. GZ0110/23-10-IF (A.M.S., Sections 1, 3, 4) and the Russian Science Foundation, project No. 23-12- 00258 (E.I.V., Sections 2, 5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Skliarevskii.

Ethics declarations

The authors declare that they have no conflicts of int-erest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skliarevskii, A.M., Vorobyov, E.I. Luminosity Outbursts in Interacting Protoplanetary Systems. Astron. Rep. 67, 1401–1417 (2023). https://doi.org/10.1134/S1063772923120107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772923120107

Keywords:

Navigation