Skip to main content
Log in

Impact Events as a Possible Mechanism to Initiate Sublimation–Dust Activity of Main-Belt Asteroids

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

As was shown in papers [1, 2] and other studies of these authors, sublimation–dust activity in some primitive-type asteroids of the Main asteroid belt (MAB) correlates with the near-perihelion position of asteroids in orbit. These results suggest that activity of this kind is induced by the sublimation (cometary) mechanism, i.e., release of dust particles from the surface of evaporating ice-bearing layers. It is considered that these layers become bared due to collisions between asteroids in the MAB. However, collisions may also directly result in ejecting the dust matter (the impact mechanism). Here, we consider the both mechanisms. The frequency and effectiveness of impacts have been quantitatively estimated. It has been shown that the collision frequency of projectile asteroids (impactors), the kinetic energy of which is higher than (1−3) × 1010 J (sufficient to eject a significant amount of dust), with a target asteroid ~100 km across (by an example of asteroid 145 Adeona) is up to ~2 yr–1. For the characteristic time of dust activity assumed at 0.01 yr, we found that, at any given time moment, among ~300 MAB asteroids larger than 100 km in diameter, several asteroids may be active due to the impact mechanism action. It is noted that this estimate is consistent with observations. To make the cometary mechanism effective, the collisions should be more powerful (the characteristic energy is 1013 J) for excavating the ice-bearing layers over a sufficiently large area (up to 0.1 km2). The frequency of powerful collisions is low, but the regions of uncovered ice-bearing layers exist for a long time. Outbursts of solar activity and heating during the asteroid’s passage along the perihelion part of the orbit may provide for the observed frequency of sublimation activity in large primitive asteroids of the MAB (there are about 200 of them). According to our model, approximately one large asteroid is active at any given time moment. Further observations are required to confirm this estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. V. Busarev, S. I. Barabanov, V. S. Rusakov, V. B. Puzin, and V. V. Kravtsov, Icarus 262, 44 (2015).

    Article  ADS  Google Scholar 

  2. V. V. Busarev, E. V. Petrova, T. R. Irsmambetova, M. P. Shcherbina, and S. I. Barabanov, Icarus 369, 114634 (2021).

  3. T. G. Sharp and P. S. de Carli, in Meteorites and the Early Solar System II, Ed. by D. S. Lauretta and H. Y. McSween (2006), p. 653.

    Google Scholar 

  4. J. N. Goswami, New Astron. Rev. 48, 125 (2004).

    Article  ADS  Google Scholar 

  5. A. Ghosh, S. J. Weidenschilling, H. Y. McSween, and A. Rubin, in Meteorites and the Early Solar System II, Ed. by D. S. Lauretta and H. Y. McSween (2006), p. 555.

    Google Scholar 

  6. T. J. McCoy, D. W. Mittlefehldt, and L. Wilson, in Meteorites and the Early Solar System II, Ed. by D. S. Lauretta and H. Y. McSween (2006), p. 733.

    Google Scholar 

  7. N. Schorghofer, Astrophys. J. 682, 697 (2008).

    Article  ADS  Google Scholar 

  8. S. Sugita, R. Honda, T. Morota, S. Kameda, H. Sawada, E. Tatsumi, M. Yamada, C. Honda, Y. Yokota, T. Kouyama, et al., Science (Washington, DC, U. S.) 364, eaaw0422 (2019).

  9. P. Farinella, C. Froeschle, C. Froeschle, R. Gonczi, G. Hahn, A. Morbidelli, and G. B. Valsecchi, Nature (London, U.K.) 371, 315 (1994).

    Article  ADS  Google Scholar 

  10. B. Gladman, P. Michel, and C. Froeschlé, Icarus 146, 176 (2000).

    Article  ADS  Google Scholar 

  11. R. V. Zolotarev and B. M. Shustov, Astron. Rep. 65, 518 (2021).

    Article  ADS  Google Scholar 

  12. H. Rickman, B. A. S. Gustafson, and J. A. Fernández, in Asteroids, Comets, Meteors III, Ed. by C. I. Lagerkvist, H. Rickman, and B. A. Lindblad (1990), p. 423.

    Google Scholar 

  13. A. V. Rusol and V. A. Dorofeeva, Open Astron. 27, 175 (2018).

    Article  ADS  Google Scholar 

  14. A. Fitzsimmons, C. Snodgrass, B. Rozitis, B. Yang, M. Hyland, T. Seccull, M. T. Bannister, W. C. Fraser, R. Jedicke, and P. Lacerda, Nat. Astron. 2, 133 (2018).

    Article  ADS  Google Scholar 

  15. A. Whitchurch, Nat. Geosci. 3, 309 (2010).

    Article  ADS  Google Scholar 

  16. H. Campins, K. Hargrove, N. Pinilla-Alonso, E. S. Howell, M. S. Kelley, J. Licandro, T. Mothé-Diniz, Y. Fernández, and J. Ziffer, Nature (London, U.K.) 464, 1320 (2010).

    Article  ADS  Google Scholar 

  17. G. Briani, A. Morbidelli, and M. Gounelle, Meteor. Planet. Sci. Suppl. 73, 5241 (2010).

    Google Scholar 

  18. M. Gounelle, in Proceedings of the European Planetary Science Congress (2012), EPSC2012-220.

  19. M. A. Barucci and P. Michel, in Proceedings of the EPSC-DPS Joint Meeting 2019 (2019), EPSC-DPS2019-202.

  20. D. Jewitt and H. H. Hsieh, arXiv: 2203.01397 (2022).

  21. D. Jewitt, H. Hsieh, and J. Agarwal, in Asteroids IV (2015), p. 221.

    Google Scholar 

  22. V. V. Busarev, S. I. Barabanov, and V. B. Puzin, Solar Syst. Res. 50, 281 (2016).

    Article  ADS  Google Scholar 

  23. V. V. Busarev, S. I. Barabanov, M. P. Scherbina, and V. B. Puzin, in Proceedings of the 48th Annual Lunar and Planetary Science Conference (2017), p. 1919.

  24. V. V. Busarev, M. P. Shcherbina, S. I. Barabanov, T. R. Irsmambetova, G. I. Kokhirova, U. K. Khamroev, I. M. Khamitov, I. F. Bikmaev, R. I. Gumerov, E. N. Irtuganov, et al., Solar Syst. Res. 53, 261 (2019).

    Article  ADS  Google Scholar 

  25. A. F. Cheng, Icarus 169, 357 (2004).

    Article  ADS  Google Scholar 

  26. W. F. Bottke, M. Brož, D. P. O’Brien, A. Campo Bagatin, A. Morbidelli, and S. Marchi, in Asteroids IV (2015), p. 701.

    Google Scholar 

  27. W. F. Bottke and M. Jutzi, in Vesta and Ceres. Insights from the Dawn Mission for the Origin of the Solar System (2022), p. 250.

    Google Scholar 

  28. D. Jewitt, H. Weaver, J. Agarwal, M. Mutchler, and M. Drahus, AAS/Div. Planet. Sci. Meeting Abstracts 42, 53.03 (2010).

  29. E. J. Opik, Proc. R. Irish Acad., Sect. A 54, 165 (1951).

  30. G. W. Wetherill, J. Geophys. Res. 72, 2429 (1967).

    Article  ADS  Google Scholar 

  31. P. Farinella and D. R. Davis, Icarus 97, 111 (1992)

    Article  ADS  Google Scholar 

  32. J. D. Vedder, Icarus 131, 283 (1998).

    Article  ADS  Google Scholar 

  33. P. S. Zain, G. C. de Elía, and R. P. di Sisto, Astron. Astrophys. 639, A9 (2020).

    Article  ADS  Google Scholar 

  34. M. Yoshikawa and T. Nakamura, in Asteroids, Comets, Meteors, LPI Contrib. 810, 322 (1993).

  35. A. Campo Bagatin, in Asteroids, Comets, Meteors, Ed. by D. Lazzaro, S. Ferraz-Mello, and J. A. Fernández, Proc. IAU 229, 335 (2006).

  36. C. G. Díaz and R. Gil-Hutton, Astron. Astrophys. 487, 363 (2008).

    Article  ADS  Google Scholar 

  37. H. Cibulková, M. Brož, and P. G. Benavidez, Icarus 241, 358 (2014).

    Article  ADS  Google Scholar 

  38. M. Nagasawa, S. Ida, and H. Tanaka, Earth, Planets Space 53, 1085 (2001).

    Article  ADS  Google Scholar 

  39. J. Peña, C. Fuentes, F. Förster, J. Martínez-Palomera, G. Cabrera-Vives, J. C. Maureira, P. Huijse, P. A. Estévez, L. Galbany, S. González-Gaitán, et al., Astron. J. 159, 148 (2020).

    Article  ADS  Google Scholar 

  40. D. R. Davis, D. D. Durda, F. Marzari, A. Campo Bagatin, and R. Gil-Hutton, in Asteroids III (2002), p. 545.

    Google Scholar 

  41. M. Granvik, A. Morbidelli, R. Jedicke, B. Bolin, W. F. Bottke, E. Beshore, D. Vokrouhlicky, D. Nesvorny, and P. Michel, Icarus 312, 181 (2018).

    Article  ADS  Google Scholar 

  42. K. A. Holsapple, Ann. Rev. Earth Planet. Sci. 21, 333 (1993).

    Article  ADS  Google Scholar 

  43. K. Holsapple, I. Giblin, K. Housen, A. Nakamura, and E. Ryan, in Asteroids III (2002), p. 443.

    Google Scholar 

  44. A. I. Suzuki, C. Okamoto, K. Kurosawa, T. Kadono, S. Hasegawa, and T. Hirai, Icarus 301, 1 (2018).

    Article  ADS  Google Scholar 

  45. T. J. Ahrens and S. G. Love, Lunar Planet. Sci. Conf. 27, 1 (1996).

  46. J. E. Colwell, S. Batiste, M. Horányi, S. Robertson, and S. Sture, Rev. Geophys. 45, RG2006 (2007).

  47. J. Hanley, M. T. Mellon, and R. E. Arvidson, in Proceedings of the 8th International Conference on Mars, LPI Contrib. 1791, 1470 (2014).

  48. N. E. Demidov, A. T. Bazilevskii, and R. O. Kuz’min, Solar Syst. Res. 49, 209 (2015).

    Article  ADS  Google Scholar 

  49. K. Wada, M. Grott, P. Michel, K. J. Walsh, A. M. Barucci, J. Biele, J. Blum, C. M. Ernst, J. T. Grundmann, B. Gundlach, et al., Prog. Earth Planet. Sci. 5, 82 (2018).

    Article  ADS  Google Scholar 

  50. M. Arakawa, T. Saiki, K. Wada, K. Ogawa, T. Kadono, K. Shirai, H. Sawada, K. Ishibashi, R. Honda, N. Sakatani, et al., Science (Washington, DC, U.S.) 368, 67 (2020).

    Article  ADS  Google Scholar 

  51. K. A. Holsapple and K. R. Housen, Icarus 187, 345 (2007).

    Article  ADS  Google Scholar 

  52. H. J. Melosh, Impact Cratering: A Geologic Process, Oxford Monographs on Geology and Geophysics Series (Clarendon, Oxford, 1989).

    Google Scholar 

  53. R. T. Daly, E. B. Bierhaus, O. S. Barnouin, M. E. Perry, C. M. Ernst, E. E. Palmer, R. W. Gaskell, J. R. Weirich, H. C. M. Susorney, C. L. Johnson, et al., in Asteroid Science in the Age of Hayabusa2 and OSIRIS-REx, LPI Contrib. 2189, 2030 (2019).

  54. R. Noguchi, N. Hirata, N. Hirata, Y. Shimaki, N. Nishikawa, S. Tanaka, T. Sugiyama, T. Morota, S. Sugita, Y. Cho, et al., Icarus 354, 114016 (2021).

  55. J. B. Vincent, M. Hoffman, A. Nathues, H. Sierks, R. W. Gaskell, S. Marchi, D. O’Brien, P. Schenk, M. Fulchignoni, H. U. Keller, et al., in Proceedings of the 43rd Annual Lunar and Planetary Science Conference (2012), p. 1415.

  56. S. Yamamoto, H. Kimura, E. Zubko, H. Kobayashi, K. Wada, M. Ishiguro, and T. Matsui, Astrophys. J. 673, L199 (2008).

    Article  ADS  Google Scholar 

  57. M. Hoang, P. Garnier, J. Lasue, H. Réme, M. T. Capria, K. Altwegg, M. Läuter, T. Kramer, and M. Rubin, Astron. Astrophys. 638, A106 (2020).

    Article  ADS  Google Scholar 

  58. E. D. Rosenberg and D. Prialnik, Icarus 201, 740 (2009).

    Article  ADS  Google Scholar 

  59. P. Vernazza, M. Ferrais, L. Jorda, J. Hanuš, B. Carry, M. Marsset, M. Brož, R. Fetick, M. Viikinkoski, F. Marchis, et al., Astron. Astrophys. 654, A56 (2021).

    Article  Google Scholar 

  60. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

    Book  Google Scholar 

  61. K. D. Gordon, ASP Conf. Ser. 309, 77 (2004).

  62. G. D. Mulders, M. Min, C. Dominik, J. H. Debes, and G. Schneider, Astron. Astrophys. 549, A112 (2013).

    Article  ADS  Google Scholar 

  63. E. Zubko, G. Videen, and Y. Shkuratov, in Proceedings of the 47th Annual Lunar and Planetary Science Conference (2016), p. 1145.

  64. B. M. Shustov, INASAN Sci. Rep. 4, 356 (2019).

    Google Scholar 

  65. M. Fulle, F. Marzari, V. della Corte, S. Fornasier, H. Sierks, A. Rotundi, C. Barbieri, P. L. Lamy, R. Rodrigo, D. Koschny, et al., Astrophys. J. 821, 19 (2016).

    Article  ADS  Google Scholar 

  66. B. M. Shustov and R. V. Zolotarev, Astron. Rep. 66, 179 (2022).

    Article  ADS  Google Scholar 

  67. N. Ysard, A. P. Jones, K. Demyk, T. Boutéraon, and M. Koehler, Astron. Astrophys. 617, A124 (2018).

    Article  ADS  Google Scholar 

  68. W. F. Bottke, D. D. Durda, D. Nesvorny, R. Jedicke, A. Morbidelli, D. Vokrouhlicky, and H. F. Levison, Icarus 179, 63 (2005).

    Article  ADS  Google Scholar 

  69. M. P. Shcherbina, V. V. Busarev, M. A. Burlak, and N. P. Ikonnikova, INASAN Sci. Rep. 7, 93 (2022).

    Google Scholar 

  70. F. J. Pozuelos, F. Moreno, F. Aceituno, V. Casanova, A. Sota, J. J. López-Moreno, J. Castellano, E. Reina, A. Diepvens, A. Betoret, et al., Astron. Astrophys. 568, A3 (2014).

    Article  Google Scholar 

  71. F. J. Pozuelos, F. Moreno, F. Aceituno, V. Casanova, A. Sota, J. J. López-Moreno, J. Castellano, E. Reina, A. Climent, A. Fernández, et al., Astron. Astrophys. 571, A64 (2014).

    Article  Google Scholar 

  72. F. Moreno, J. Licandro, A. Cabrera-Lavers, and F. J. Pozuelos, Astrophys. J. 826, 137 (2016).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to E.V. Petrova for useful discussions of the study.

Funding

This study is supported by the Russian Science Foundation (grant no. 22-12-00115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Shustov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Petrova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shustov, B.M., Zolotarev, R.V., Busarev, V.V. et al. Impact Events as a Possible Mechanism to Initiate Sublimation–Dust Activity of Main-Belt Asteroids. Astron. Rep. 66, 1098–1110 (2022). https://doi.org/10.1134/S1063772922110178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772922110178

Keywords:

Navigation