Skip to main content
Log in

The Orientation Influence of a Hot Jupiter’s Intrinsic Dipole Magnetic Field on the Flow Structure in Its Extended Envelope

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The orientation parameter effect of a hot Jupiter’s intrinsic dipole magnetic field on the flow structure in an extended gaseous (ionospheric) envelope of the planet is studied with a three-dimensional numerical simulation. For example, the hot Jupiter HD 209458b is considered. The magnitude of the planet’s magnetic momentum was set equal to 0.1 of the magnetic momentum of Jupiter. The parameters of the stellar wind’s magnetic field corresponding to the case of a super-Alfvén flow regime around the planet’s atmosphere was taken into account. Under such conditions, calculations have shown that a quasi-closed gaseous (ionospheric) envelope with an induced shock magnetosphere is formed around a hot Jupiter, with a detailed structure determined by the magnetic dipole’s slope angle. In this case, the mass-loss rate depends on the orientation of the planet’s dipole magnetic field and increases with an increasing angle between the direction to the star and the direction closest to the inner Lagrange point’s magnetic pole. This is due to the electromagnetic force increase that impedes the free movement of the matter in the emerging outflow when the magnetic pole approaches the inner Lagrange point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. A. Murray-Clay, E. I. Chiang, and N. Murray, Astrophys. J. 693, 23 (2009).

    Article  ADS  Google Scholar 

  2. M. Mayor and D. Queloz, Nature (London, U.K.) 378, 355 (1995).

    Article  ADS  Google Scholar 

  3. D. Lai, C. Helling, and E. P. J. van den Heuvel, Astrophys. J. 721, 923 (2010).

    Article  ADS  Google Scholar 

  4. S.-L. Li, N. Miller, D. N. C. Lin, and J. J. Fortney, N-ature (London, U.K.) 463, 1054 (2010).

    Article  ADS  Google Scholar 

  5. A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Desert, G. E. Ballester, et al., Nature (London, U.K.) 422, 143 (2003).

    Article  ADS  Google Scholar 

  6. A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Desert, G. E. Ballester, et al., Astrophys. J. 676, L57 (2008).

    Article  ADS  Google Scholar 

  7. L. Ben-Jaffel, Astrophys. J. 671, L61 (2007).

    Article  ADS  Google Scholar 

  8. A. Vidal-Madjar, J.-M. Desert, A. Lecavelier des Etangs, G. Hebrard, et al., Astrophys. J. 604, L69 (2004).

    Article  ADS  Google Scholar 

  9. L. Ben-Jaffel and S. Sona Hosseini, Astrophys. J. 709, 1284 (2010).

    Article  ADS  Google Scholar 

  10. J. L. Linsky, H. Yang, K. France, C.S. Froning, et al., Astrophys. J. 717, 1291 (2010).

    Article  ADS  Google Scholar 

  11. R. V. Yelle, Icarus 170, 167 (2004).

    Article  ADS  Google Scholar 

  12. A. Garcia Munoz, Planet. Space Sci. 55, 1426 (2007).

    Article  ADS  Google Scholar 

  13. T. T. Koskinen, M. J. Harris, R. V. Yelle, and P. Lavvas, Icarus 226, 1678 (2013).

    Article  ADS  Google Scholar 

  14. D. E. Ionov, V. I. Shematovich, and Ya. N. Pavlyuchenkov, Astron. Rep. 61, 387 (2017).

    Article  ADS  Google Scholar 

  15. D. V. Bisikalo, P. V. Kaigorodov, D. E. Ionov, and V. I. Shematovich, Astron. Rep. 57, 715 (2013).

    Article  ADS  Google Scholar 

  16. A. A. Cherenkov, D. V. Bisikalo, and P. V. Kaigorodov, Astron. Rep. 58, 679 (2014).

    Article  ADS  Google Scholar 

  17. D. V. Bisikalo and A. A. Cherenkov, Astron. Rep. 60, 183 (2016).

    Article  ADS  Google Scholar 

  18. A. Cherenkov, D. Bisikalo, L. Fossati, and C. Mostl, Astrophys. J. 846, 31 (2017).

    Article  ADS  Google Scholar 

  19. A. A. Cherenkov, D. V. Bisikalo, and A. G. Kosovichev, Mon. Not. R. Astron. Soc. 475, 605 (2018).

    Article  ADS  Google Scholar 

  20. D. V. Bisikalo, A. A. Cherenkov, V. I. Shematovich, L. Fossati, and C. Mostl, Astron. Rep. 62, 648 (2018).

    Article  ADS  Google Scholar 

  21. I. F. Shaikhislamov, M. L. Khodachenko, H. Lammer, A. G. Berezutsky, I. B. Miroshnichenko, and M. S. Rumenskikh, Mon. Not. R. Astron. Soc. 481, 5315 (2018).

    Article  ADS  Google Scholar 

  22. J.-M. Grießmeier, A. Stadelmann, T. Penz, et al., Astron. Astrophys. 425, 753 (2004).

    Article  ADS  Google Scholar 

  23. A. Sanchez-Lavega, Astrophys. J. 609, L87 (2004).

    Article  ADS  Google Scholar 

  24. A. A. Vidotto, M. Jardine, and Ch. Helling, Mon. Not. R. Astron. Soc. 411, L46 (2011).

    Article  ADS  Google Scholar 

  25. K. G. Kislyakova, M. Holmstrom, H. Lammer, et al., Science (Washington, DC, U. S.) 346, 981 (2014).

    Article  ADS  Google Scholar 

  26. D. J. Stevenson, Rep. Prog. Phys. 46, 555 (1983).

    Article  ADS  Google Scholar 

  27. A. P. Showman and T. Guillot, Astron. Astrophys. 385, 166 (2002).

    Article  ADS  Google Scholar 

  28. K. Batygin, S. Stanley, and D. J. Stevenson, Astrophys. J. 776, 53 (2013).

    Article  ADS  Google Scholar 

  29. T. M. Rogers and A. P. Showman, Astrophys. J. 782, L4 (2014).

    Article  ADS  Google Scholar 

  30. T. M. Rogers and T. D. Komacek, Astrophys. J. 794, 132 (2014).

    Article  ADS  Google Scholar 

  31. T. M. Rogers, Nat. Astron. 1, 0131 (2017).

  32. K. M. Moore, R. K. Yadav, L. Kulowski, et al., Nature (London, U.K.) 561, 76 (2018).

    Article  ADS  Google Scholar 

  33. C. A. Jones, Ann. Rev. Fluid Mech. 43, 583 (2011).

    Article  ADS  Google Scholar 

  34. C. A. Jones, Icarus 241, 148 (2014).

    Article  ADS  Google Scholar 

  35. S. I. Braginskii, Sov. Phys. JETP 20, 1462 (1964).

    MathSciNet  Google Scholar 

  36. E. N. Parker, Cosmical Magnetic Fields: Their Origin and Their Activity (Clarendon, Oxford, 1979).

    Google Scholar 

  37. T. G. Cowling, Mon. Not. R. Astron. Soc. 94, 39 (1933).

    Article  ADS  Google Scholar 

  38. A. S. Arakcheev, A. G. Zhilkin, P. V. Kaigorodov, D. V. Bisikalo, and A. G. Kosovichev, Astron. Rep. 61, 932 (2017).

    Article  ADS  Google Scholar 

  39. D. V. Bisikalo, A. S. Arakcheev, and P. V. Kaigorodov, Astron. Rep. 61, 925 (2017).

    Article  ADS  Google Scholar 

  40. T. T. Koskinen, J. Y.-K. Cho, N. Achilleos, and A. D. Aylward, Astrophys. J. 722, 178 (2010).

    Article  ADS  Google Scholar 

  41. G. B. Trammell, P. Arras, and Z.-Y. Li, Astrophys. J. 728, 152 (2011).

    Article  ADS  Google Scholar 

  42. I. F. Shaikhislamov, M. L. Khodachenko, Y. L. Sasunov, H. Lammer, et al., Astrophys. J. 795, 132 (2014).

    Article  ADS  Google Scholar 

  43. M. L. Khodachenko, I. F. Shaikhislamov, H. Lammer, and P. A. Prokopov, Astrophys. J. 813, 50 (2015).

    Article  ADS  Google Scholar 

  44. G. B. Trammell, Z.-Y. Li, and P. Arras, Astrophys. J. 788, 161 (2014).

    Article  ADS  Google Scholar 

  45. T. Matsakos, A. Uribe, and A. Konigl, Astron. Astrophys. 578, A6 (2015).

    Article  ADS  Google Scholar 

  46. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 63, 550 (2019).

    Article  ADS  Google Scholar 

  47. W.-H. Ip, A. Kopp, and J. H. Hu, Astrophys. J. 602, L53 (2004).

    Article  ADS  Google Scholar 

  48. E. S. Belenkaya, Phys. Usp. 52, 765 (2009).

    Article  ADS  Google Scholar 

  49. C. T. Russell, Rep. Prog. Phys. 56, 687 (1993).

    Article  ADS  Google Scholar 

  50. P. Zarka, Planet. Space Sci. 55, 598 (2007).

    Article  ADS  Google Scholar 

  51. A. Strugarek, A. S. Brun, S. P. Matt, and V. Reville, Astrophys. J. 815, 111 (2015).

    Article  ADS  Google Scholar 

  52. P. V. Kaigorodov, E. A. Ilyina, and D. V. Bisikalo, Astron. Rep. 63, 365 (2019).

    Article  ADS  Google Scholar 

  53. A. G. Zhilkin, D. V. Bisikalo, and P. V. Kaigorodov, Astron. Rep. 97 (2020, in press).

  54. S. Czesla, P. C. Schneider, M. Salz, et al., Astron. Astrophys. 629, A5 (2019).

    Article  Google Scholar 

  55. D. V. Bisikalo, A. G. Zhilkin, and A. A. Boyarchuk, Gas Dynamics of Close Binary Stars (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  56. A. G. Zhilkin, D. V. Bisikalo, and A. A. Boyarchuk, Phys. Usp. 55, 115 (2012).

    Article  ADS  Google Scholar 

  57. T. Tanaka, J. Comput. Phys. 111, 381 (1994).

    Article  ADS  Google Scholar 

  58. K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. de Zeeuw, J. Comput. Phys. 154, 284 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  59. F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Springer, Berlin, 1984).

    Book  Google Scholar 

  60. M. J. Owens and R. J. Forsyth, Living Rev. Sol. Phys. 10, 5 (2013).

    Article  ADS  Google Scholar 

  61. V. B. Baranov and K. V. Krasnobaev, Hydrodynamic Theory of Cosmic Plasma (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  62. E. J. Weber and L. Davis, Jr., Astrophys. J. 148, 217 (1967).

    Article  ADS  Google Scholar 

  63. J. C. Brandt, C. Wolff, and J. P. Cassinelli, Astrophys. J. 156, 1117 (1969).

    Article  ADS  Google Scholar 

  64. T. Sakurai, Sol. Phys. 76, 301 (1982).

    Article  ADS  Google Scholar 

  65. M. L. Goelzer, N. A. Schwadron, and C. W. Smith, J. Geophys. Res. Space Phys. 119, 115 (2014).

    Article  ADS  Google Scholar 

  66. D. Fabbian, R. Simoniello, R. Collet, et al., Astron. Nachr. 338, 753 (2017).

    Article  ADS  Google Scholar 

  67. H. Lammer, M. Gudel, Y. Kulikov, et al., Earth Planets Space 64, 179 (2012).

    Article  ADS  Google Scholar 

  68. D. Charbonneau, T. M. Brown, D. W. Latham, and M. Mayor, Astrophys. J. 529, L45 (2000).

    Article  ADS  Google Scholar 

  69. G. L. Withbroe, Astrophys. J. 325, 442 (1988).

    Article  ADS  Google Scholar 

  70. P. L. Roe, Lect. Notes Phys. 141, 354 (1980).

  71. P. D. Lax, Commun. Pure Appl. Math. 7, 159 (1954).

    Article  Google Scholar 

  72. R. O. Friedrihs, Commun. Pure Appl. Math. 7, 345 (1954).

    Article  Google Scholar 

  73. V. V. Rusanov, Sov. Phys. JETP 14, 192 (1961).

    Google Scholar 

  74. P. Cargo and G. Gallice, J. Comp. Phys. 136, 446 (1997).

    Article  ADS  Google Scholar 

  75. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; CRC, Boca Raton, FL, 2019).

  76. S. R. Chakravarthy and S. Osher, AIAA Papers No. 85-0363 (AIAA, 1985).

    Google Scholar 

  77. A. G. Zhilkin, A. V. Sobolev, D. V. Bisikalo, and M. M. Gabdeev, Astron. Rep. 63, 751 (2019).

    Article  ADS  Google Scholar 

  78. B. Einfeldt, SIAM J. Numer. Anal. 25, 294 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  79. A. Harten and J. Hyman, J. Comp. Phys. 50, 235 (1983).

    Article  ADS  Google Scholar 

  80. A. Dedner, F. Kemm, D. Kroner, C.-D. Munz, T. Schnitzer, and M. Wesenberg, J. Comput. Phys. 175, 645 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  81. W. M. Farrell, T. J. W. Lazio, M. D. Desch, T. S. Bastian, and P. Zarka, in Bioastronomy 2002: Life among the Stars, Proceedings of the 213th IAU Symposium, Ed. by R. Norris and F. Stootman (Astron. Soc. Pacif., San Francisco, CA, 2004), p. 73.

  82. C. Weber, H. Lammer, I. F. Shaikhislamov, et al., Mon. Not. R. Astron. Soc. 469, 3505 (2017).

    Article  ADS  Google Scholar 

  83. J. E. Owen and F. C. Adams, Mon. Not. R. Astron. Soc. 444, 3761 (2014).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (contract no. 18-12-00447). The study was carried out using capacities of the collective usage center “Complex for modeling of the data of mega-class research equipment” of the National Research Center “Kurchatov Institute” (http://ckp.nrcki.ru/) and Interdepartmental Supercomputer Center of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Zhilkin.

Additional information

Translated by L. Yungelson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhilkin, A.G., Bisikalo, D.V. & Kaygorodov, P.V. The Orientation Influence of a Hot Jupiter’s Intrinsic Dipole Magnetic Field on the Flow Structure in Its Extended Envelope. Astron. Rep. 64, 259–271 (2020). https://doi.org/10.1134/S1063772920030063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772920030063

Navigation