Skip to main content
Log in

Evolution of a Viscous Protoplanetary Disk with Convectively Unstable Regions

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The role of convection in the gas-dust accretion disk around a young star is studied. The evolution of a Keplerian disk is modeled using the Pringle equation, which describes the time variations of the surface density under the action of turbulent viscosity. The distributions of the density and temperature in the polar directions are computed simultaneously in the approximation that the disk is hydrostatically stable. The computations of the vertical structure of the disk take into account heating by stellar radiation, interstellar radiation, and viscous heating. The main factor governing evolution of the disk in this model is the dependence of the viscosity coefficient on the radius of the disk. The computations of this coefficient take into account the background viscosity providing the continuous accretion of the gas and the convective viscosity, which depends on the parameters of the convection at a given radius. The results of computations of the global evolution and morphology of the disk obtained in this approach are presented. It is shown that, in the adopted model, the accretion has burst-like character: after the inner part of the disk (\(R < 3\) AU) is filled with matter, this material is transferred relatively rapidly onto the star, after which the process is repeated. Our results may be useful for explaining the activity of young FU Ori and EX Lup objects. It is concluded that convection may be one of the mechanisms responsible for the non-steady pattern of accretion in protostellar disks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig 7.

Similar content being viewed by others

REFERENCES

  1. P. J. Armitage, Astrophysics of Planet Formation (Cambridge University Press, Cambridge, UK, 2013).

    Google Scholar 

  2. A. G. W. Cameron, Moon and Planets 18, 5 (1978).

    Article  ADS  Google Scholar 

  3. D. N. C. Lin and J. Papaloizou, Monthly Not. Roy. Astron. Soc. 191, 37 (1980).

    ADS  Google Scholar 

  4. H. Klahr, in Convection in Astrophysics, Ed. by F. Kupka, I. Roxburgh, and K. L. Chan, Proc. IAU Symp. 239, 405 (2006).

  5. W. Cabot, V. M. Canuto, O. Hubickyj, and J. B. Pollack, Icarus 69, 423 (1987).

    Article  ADS  Google Scholar 

  6. W. Cabot, V. M. Canuto, O. Hubickyj, and J. B. Pollack, Icarus 69, 387 (1987).

    Article  ADS  Google Scholar 

  7. H. H. Klahr, T. Henning, and W. Kley, Astrophys. J. 514, 325 (1999).

    Article  ADS  Google Scholar 

  8. H. H. Klahr and P. Bodenheimer, Astrophys. J. 582, 869 (2003) [arXiv:astro-ph/0211629].

    Article  ADS  Google Scholar 

  9. G. M. Lipunova, N. I. Shakura, Izv. RAN. Ser. fiz. 67, 322 (2003) [in Russian].

    Google Scholar 

  10. S. Hirose, O. Blaes, J. H. Krolik, M. S. B. Coleman, and T. Sano, Astrophys. J. 787, 1 (2014) [arXiv:1403.3096].

    Article  ADS  Google Scholar 

  11. M. S. B. Coleman, I. Kotko, O. Blaes, J. P. Lasota, and S. Hirose, Monthly Not. R. Astron. Soc. 462, 3710 (2016) [arXiv:1608.01321].

    Article  ADS  Google Scholar 

  12. L. E. Held and H. N. Latter, Monthly Not. R. Astron. Soc. 480, 4797 (2018) [arXiv:1808.00267].

    ADS  Google Scholar 

  13. N. Shakura and K. Postnov, Monthly Not. R. Astron. Soc. 448, 3707 (2015) [arXiv:1502.01888].

    Article  ADS  Google Scholar 

  14. N. Shakura and K. Postnov, Monthly Not. R. Astron. Soc. 451, 3995 (2015) [arXiv:1506.00526].

    Article  ADS  Google Scholar 

  15. K. L. Malanchev, K. A. Postnov, and N. I. Shakura, Monthly Not. R. Astron. Soc. 464, 410 (2017) [arXiv:1609.03799].

    Article  ADS  Google Scholar 

  16. J. E. Pringle, Ann. Rev. Astron. Astrophys. 19, 137 (1981).

    Article  ADS  Google Scholar 

  17. P. J. Armitage, Ann. Rev. Astron. Astrophys. 49, 195 (2011) [arXiv:1011.1496].

    Article  ADS  Google Scholar 

  18. J. P. Williams and L. A. Cieza, Ann. Rev. Astron. Astrophys. 49, 67 (2011) [arXiv:1103.0556].

    Article  ADS  Google Scholar 

  19. L. Hartmann, N. Calvet, E. Gullbring, and P. D’Alessio, Astrophys. J. 495, 385 (1998).

    Article  ADS  Google Scholar 

  20. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  21. P. Cossins, G. Lodato, and C. J. Clarke, Monthly Not. R. Astron. Soc. 393, 1157 (2009) [arXiv:0811.3629].

    Article  ADS  Google Scholar 

  22. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press, 1959).

    Google Scholar 

  23. C. P. Dullemond, A. Natta, and L. Testi, Astrophys. J. 645, L69 (2006) [arXiv:astro-ph/0605336].

    Article  ADS  Google Scholar 

  24. A. Chacón-Tanarro, J. E. Pineda, P. Caselli, L. Bizzocchi, et al., Astron. Astrophys. 623, id. A118 (2019) [arXiv:1901.02476].

  25. J. Klapp, L. D. G. Sigalotti, M. Zavala, F. Pe na-Polo, and J. Troconis, Astrophys. J. 780, 188 (2014).

    Article  ADS  Google Scholar 

  26. E. I. Vorobyov and Y. N. Pavlyuchenkov, Astron. Astrophys. 606, id. A5 (2017) [arXiv:1706.00401].

  27. E. I. Vorobyov, Y. N. Pavlyuchenkov, and P. Trinkl, A-stron. Rep. 58, 522 (2014).

    Article  ADS  Google Scholar 

  28. A. V. Tutukov and Y. N. Pavlyuchenkov, Astron. Rep. 48, 800 (2004).

    Article  ADS  Google Scholar 

  29. M. Audard, P. Ábrahám, M. M. Dunham, and J. D. Green, in Protostars and Planets VI, Ed. by H. Beuther, R. S. Klessen, C. P. Dullemond, and T. K. Henning (University of Arizona Press, 2014), p. 387 [arXiv:1401.3368].

    Google Scholar 

  30. E. I. Vorobyov, V. G. Elbakyan, A. L. Plunkett, M. M. Dunham, M. Audard, M. Guedel, and O. Dionatos, Astron. and Astrophys. 613, id. A18 (2018) [arXiv:1801.06707].

  31. A. Scholz, D. Froebrich, and K. Wood, Monthly Not. Roy. Astron. Soc. 430, 2910 (2013) [arXiv:1301.3152].

    Article  ADS  Google Scholar 

  32. A. B. Makalkin and V. A. Dorofeeva, Solar System Research 29, 85 (1995).

    ADS  Google Scholar 

  33. A. B. Makalkin and V. A. Dorofeeva, Solar System Research 30, 440 (1996).

    ADS  Google Scholar 

  34. C. J. Hansen, S. D. Kawaler, and V. Trimble, Stellar interiors: physical principles, structure, and evolution (Springer, New York, 2004).

    Book  Google Scholar 

  35. Z. Zhu, L. Hartmann, C. Gammie, and J. C. McKinney, Astrophys. J. 701, 620 (2009) [arXiv:0906.1595].

    Article  ADS  Google Scholar 

  36. E. I. Vorobyov and S. Basu, Astrophys. J. 650, 956 (2006) [arXiv:astro-ph/0607118].

    Article  ADS  Google Scholar 

  37. K. Milliner, J. H. Matthews, K. S. Long, and L. Hartmann, Monthly Not. R. Astron. Soc. 483, 1663 (2019) [arXiv:1811.12453].

    Article  ADS  Google Scholar 

  38. A. V. Tutukov and Y. N. Pavlyuchenkov, Astron. Rep. (submitted).

Download references

ACKNOWLEDGMENTS

We thank the referee for valuable comments and constructive suggestions for improvement of the paper. We also thank A.B. Makalkin for useful discussions.

Funding

This project was supported by the Russian Foundation for Basic Research (project 17-02-00644).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. N. Pavlyuchenkov.

Additional information

Translated by L. Yungelson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlyuchenkov, Y.N., Tutukov, A.V., Maksimova, L.A. et al. Evolution of a Viscous Protoplanetary Disk with Convectively Unstable Regions. Astron. Rep. 64, 1–14 (2020). https://doi.org/10.1134/S1063772920010060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772920010060

Navigation