Skip to main content
Log in

Kinetic Monte Carlo Model for the Precipitation of High-Energy Protons and Hydrogen Atoms into the Atmosphere of Mars with Taking into Account the Measured Magnetic Field

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Results of model computations of the interaction of the high-energy protons and hydrogen atoms (H/H+) precipitating into the Martian atmosphere are presented. These computations were performed using a modification of the kinetic Monte Carlo model developed earlier for the analysis of the data from the MEX/ASPERA-3 instrument onboard the Mars Express spacecraft and the MAVEN/SWIA instrument onboard the MAVEN spacecraft. In this modification of the model, an arbitrary (three-dimensional) structure of the magnetic field of Mars is taken into account for the first time. With local measurements of all three components of the magnetic field, not only the flux of protons penetrating into the atmosphere, but also the degradation of the H/H+ flux along the spacecraft orbit and the formation of upward fluxes of protons and hydrogen atoms scattered by the atmosphere, can now be described. A comparison of simulations and measurements of proton fluxes at low altitudes are used to infer the efficiency of charge exchange between the solar wind and the extended Martian hydrogen corona. It was found that the induced magnetic field plays a very important role in the formation of the proton flux back-scattered by the atmosphere and strongly controls its magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-L. Bertaux, F. Leblanc, O. Witasse, E. Quemerais, J. Lilensten, S. A. Stern, B. Sandel, and O. Korablev, Nature 435, 790 (2005).

    Article  ADS  Google Scholar 

  2. F. Leblanc, J. Y. Chaufray, O. Witasse, J. Lilensten, and J.-L. Bertaux, J. Geophys. Res. 111, E09S11 (2006).

    Article  Google Scholar 

  3. B. Ritter, J.-C. Gérard, B. Hubert, and L. Rodriguez, Geophys. Res. Lett. 45, 231 (2018).

    Article  Google Scholar 

  4. N. M. Schneider, J. I. Deighan, S. K. Jain, A. Stiepen, et al., Science 350, 0313 (2015).

    Article  Google Scholar 

  5. J. Deighan, S. K. Jain M. S. Chaffin, X. Fang, et al., Nat. Astron. 2, 802 (2018).

    Article  ADS  Google Scholar 

  6. J.-C. Gérard, L. Soret, L. Libert, R. Lundin, A. Stiepen, A. Radioti, and J.-L. Bertaux, J. Geophys. Res. 120, 6749 (2015).

    Article  Google Scholar 

  7. L. Soret, J. C. Gérard, L. Libert, V. I. Shematovich, D. V. Bisikalo, A. Stiepen, and J.-L. Bertaux, Icarus 264, 398 (2016).

    Article  ADS  Google Scholar 

  8. D. V. Bisikalo, V. I. Shematovich, J.-C. Gérard, and B. Hubert, Icarus 282, 127 (2017).

    Article  ADS  Google Scholar 

  9. V. I. Shematovich, D. V. Bisikalo, J.-C. Gérard, and B. Hubert, Solar System Res. 51, 362 (2017).

    Article  ADS  Google Scholar 

  10. J. S. Halekas, R. J. Lillis, D. L. Mitchell, T. E. Cravens, et al., Geophys. Res. Lett. 42, (2015).

  11. J. Y. Chaufray, J.-L. Bertaux, F Leblanc, and E. Quemerais, Icarus 195, 598 (2008).

    Article  ADS  Google Scholar 

  12. S. Barabash, R. Lundin, R. Zarnowiecki, and S. Grzedzielski, Adv. Space Res. 16, 81 (1995).

    Article  ADS  Google Scholar 

  13. E. Kallio, J. G. Luhmann, and S. Barabash, J. Geophys. Res. 102, 22183 (1997).

    Article  ADS  Google Scholar 

  14. M. Holmström, S. Barabash, and E. Kallio, J. Geophys. Res. 107, 1277 (2002).

    Article  Google Scholar 

  15. A. Galli, P. Wurz, E. Kallio, A. Ekenbäck, et al., J. Geophys. Res. 113, E12012 (2008).

    Article  ADS  Google Scholar 

  16. X.-D. Wang, S. Barabash, Y Futaana, A. Grigoriev, and P. Wurz, J. Geophys. Res. 118, 7635 (2013).

    Article  Google Scholar 

  17. X.-D. Wang, S. Barabash, Y Futaana, A. Grigoriev, and P. Wurz, J. Geophys. Res. 119, 8600 (2014).

    Article  Google Scholar 

  18. J.-C. Gérard, B. Hubert, M. Meurant, V. I. Shematovich, et al., J. Geophys. Res. 106, 28939 (2001).

    Article  ADS  Google Scholar 

  19. H. U. Frey, S. B. Mende, T. J. Immel, S. A. Fuselier, E. S. Claflin, J.-C. Gérard, and B. Hubert, J. Geophys. Res. 107 SMP 2-1 (2002).

  20. A. W Stephan, S. Chakrabarti, and D. I. M. Cotton, Geophys. Res. Lett. 27, 2865 (2000).

    Article  ADS  Google Scholar 

  21. E. Kalli. and S. Barabash, J. Geophys. Res. 106, 165 (2001).

    Article  ADS  Google Scholar 

  22. V. I. Shematovich, D. V. Bisikalo, C. Diéval, S. Barabash, G. Stenberg, H. Nilsson, and J.-C. Gérard, J. Geophys. Res. 116, A11320 (2011).

    Article  ADS  Google Scholar 

  23. D. V. Bisikalo, V. I. Shematovich, J.-C. Gérard, and B. Hubert, J. Geophys. Res. 123, 58 (2018).

    Article  Google Scholar 

  24. H. Gunell, K. Brinkfeldt, M. Holmström, P. C. Brandt, et al., Icarus 182, 431 (2006).

    Article  ADS  Google Scholar 

  25. Y. Futaana, S. Barabash, A. Grigoriev, M. Holmström, E. Kallio, P. C. Brandt, and C. Dierker, Icarus 182, 424 (2006).

    Article  ADS  Google Scholar 

  26. A. Mura, S. Orsini, A. Milillo, E. Kallio, et al., Planet. Space Sci. 56, 840 (2008).

    Article  ADS  Google Scholar 

  27. J. E. P. Connerney, J. R. Espley, G. A. DiBraccio, J. R. Gruesbeck, R. J. Oliversen, D. L. Mitchell, and B. M. Jakosky, Geophys. Res. Lett. 42, 8819 (2015).

    Article  ADS  Google Scholar 

  28. J. S. Halekas, E. R. Taylor, G. Dalton, G. Johnson, D. W. Curtis, J. P. McFadden, D. L. Mitchell, R. P. Lin, and B. M. Jakosky, Space Sci. Rev. 195, 125 (2015).

    Article  ADS  Google Scholar 

  29. J.-C. Gérard, B. Hubert, D. V. Bisikalo, and V. I. She-matovich, J. Geophys. Res. 105, 795 (2000).

    Article  Google Scholar 

  30. V. I. Shematovich, D. V. Bisikalo, and J.-C. Gérard, J. Geophys. Res. 99, 23217 (1994).

    Article  ADS  Google Scholar 

  31. D. V. Bisikalo, V. I. Shematovich, and J.-C. Gérard, J. Geophys. Res. 100, 3715 (1995).

    Article  ADS  Google Scholar 

  32. V.I. Shematovich, AIP Conf. Proc 1084, 1047 (2008).

    Article  ADS  Google Scholar 

  33. J. L. Fox and A. B. Hac, Icarus 204, 527 (2009).

    Article  ADS  Google Scholar 

  34. D. A. Brain, F. Bagenal, M. H. Acuna, and J. E. P. Connerney, J. Geophys. Res. 108, 1424 (2003).

    Article  Google Scholar 

  35. F Akalin, D. D. Morgan, D. A. Gurnett, D. L. Kirchner, D. A. Brain, R. Modolo, M. H. Acuna, and J. R. Espley, Icarus 206, 104 (2010).

    Article  ADS  Google Scholar 

  36. J. C. Gérard, B. Hubert, B. Ritter, V. I. Shematovich, and D. V. Bisikalo, Icarus 321, 266 (2019).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Scientific Foundation (project 19-12-00370).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Shematovich.

Additional information

Russian Text © The Author(s), 2019, published in Astronomicheskii Zhurnal, 2019, Vol. 96, No. 10, pp. 836–746.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shematovich, V.I., Bisikalo, D.V., Gérard, JC. et al. Kinetic Monte Carlo Model for the Precipitation of High-Energy Protons and Hydrogen Atoms into the Atmosphere of Mars with Taking into Account the Measured Magnetic Field. Astron. Rep. 63, 835–845 (2019). https://doi.org/10.1134/S1063772919100056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772919100056

Navigation