Skip to main content
Log in

Loop Quantum Cosmology and Probability of Inflation

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

We study the measure on the set of initial conditions in remote past for Loop Quantum Cosmology with massive scalar field motivated by various choices of the measure present in the literature. The main finding of the paper is existence of an attractor at contracting phase of the universe, which, in addition to the well known attractor at expanding phase, predicts a very specific duration of inflationary stage with the number of e-foldings about 140.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Belinsky, L. P. Grishchuk, I. M. Khalatnikov, and Y. B. Zeldovich, Phys. Lett. B 155, 232 (1985). http://www.sciencedirect.com/science/article/pii/0370269385906446.

    Article  ADS  MathSciNet  Google Scholar 

  2. G. Gibbons, S. Hawking, and J. Stewart, Nucl. Phys. B 281, 736 (1987). http://linkinghub. elsevier.com/retrieve/pii/0550321387904251.

    Article  ADS  Google Scholar 

  3. G. W. Gibbons and N. Turok, Phys. Rev. D 77 (2008). https://link.aps.org/doi/10.1103/PhysRev D.77.063516

    Google Scholar 

  4. A. Corichi and D. Sloan, Class. Quantum Grav. 31, 062001 (2014). http://stacks.iop.org/0264-9381/31/i=6/a=062001?key=crossref.0ef4ffba 20558581fdd04bf97d48730a.

    Article  ADS  Google Scholar 

  5. G. N. Remmen and S. M. Carroll, Phys. Rev. D 88 (2013). https://link.aps.org/doi/10.1103/Phys-RevD.88.083518.

    Google Scholar 

  6. A. Borde, A. H. Guth, and A. Vilenkin, Phys. Rev. Lett. 90 (2003). https://link.aps.org/doi/10.1103/PhysRevLett. 90. 151301.

    Google Scholar 

  7. D. N. Page, Class. Quantum Grav. 1, 417 (1984). http://stacks.iop.org/0264-9381/1/i=4/a=015 ?key=crossref.f03fb75a87a3d279ccc1a02a8cb5dccf.

    Article  ADS  Google Scholar 

  8. T. Thiemann, Lect. Notes Phys. 631, 41 (2003). http://link.springer.com/10.1007/978-3-540-45230-0_3.

    Article  ADS  Google Scholar 

  9. A. Ashtekar and J. Lewandowski, Class. Quantum Grav. 21, R53 (2004). http://stacks.iop.org/0264-9381/21/i=15/a=R01?key=crossref. 003d9a7ff25a5f69bef583aca7d6fb1e.

    MATH  Google Scholar 

  10. C. Rovelli, Quantum Gravity (Cambridge Univ. Press, Cambridge, 2004). http://ebooks.cambridge.org/ref/id/CBO9780511755804.

    Book  MATH  Google Scholar 

  11. M. Bojowald, Living Rev. Relativ. 11 (2008). http: //link.springer.com/10.12942/lrr-2008-4.

    Google Scholar 

  12. A. Ashtekar, T. Pawlowski, and P. Singh, Phys. Rev. D 74, 084003 (2006). https://link.aps.org/doi/10.1103/PhysRevD.74.084003

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Ashtekar, T. Pawlowski, and P. Singh, Phys. Rev. D 73, 124038 (2006). https://link.aps.org/doi/10.1103/PhysRevD.73.124038.

    Article  ADS  MathSciNet  Google Scholar 

  14. P. Singh, K. Vandersloot, and G. V. Vereshchagin, Phys. Rev. D 74, 043510 (2006). https://link.aps.org/doi/10.1103/PhysRevD.74.043510

    Article  ADS  Google Scholar 

  15. A. Ashtekar and D. Sloan, Phys. Lett. B 694, 108 (2010). http://linkinghub. elsevier.com/retrieve/pii/S0370269310011585.

    Article  ADS  MathSciNet  Google Scholar 

  16. A. Corichi and A. Karami, Phys. Rev. D 83, 104006 (2011). https://link. aps.org/doi/10.1103/PhysRevD.83.104006.

    Article  ADS  Google Scholar 

  17. R. Penrose, Ann. N.Y. Acad. Sci. 571, 249 (1989).

    Article  ADS  Google Scholar 

  18. L. Linsefors and A. Barrau, Phys. Rev. D 87 (2013).

    Google Scholar 

  19. M. Domagala and J. Lewandowski, Class. Quantum Grav. 21, 5233 (2004). http://stacks.iop.org/0264-9381/21/i=22/a=014.

    Article  ADS  Google Scholar 

  20. K. A. Meissner, Class. Quantum Grav. 21, 5245 (2004). http://stacks.iop.org/0264-9381/21/i=22/a=015?key=crossref. 0f3e2dfd63e12b71b91f8b5f73bebd3f.

    Article  ADS  Google Scholar 

  21. G. V. Vereshchagin, Int. J. Mod. Phys. D 12, 1487 (2003). http://www. worldscientific. com/doi/abs/10.1142/S0218271803003827.

    Article  ADS  Google Scholar 

  22. M. Bojowald, Phys. Rev. Lett. 86, 5227 (2001). https://link.aps.org/doi/10.1103/PhysRevLett.86.5227.

    Article  ADS  MathSciNet  Google Scholar 

  23. G. N. Remmen and S. M. Carroll, Phys. Rev. D 90 (2014).

    Google Scholar 

  24. K. Geist, U. Parlitz, and W. Lauterborn, Prog. Theor. Phys. 83, 875 (1990). https://academic.oup.com/ptp/articlelookup/doi/10.1143/PTP.83.875.

    Article  ADS  Google Scholar 

  25. S. Bedić and G. Vereshchagin, arXiv:1807.06554 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Vereshchagin.

Additional information

The article is published in the original.

Paper presented at the Third Zeldovich meeting, an international conference in honor of Ya.B. Zeldovich held in Minsk, Belarus on April 23–27, 2018. Published by the recommendation of the special editors: S.Ya. Kilin, R. Ruffini, and G.V. Vereshchagin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vereshchagin, G., Bedić, S. Loop Quantum Cosmology and Probability of Inflation. Astron. Rep. 62, 959–964 (2018). https://doi.org/10.1134/S1063772918120326

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772918120326

Navigation