Skip to main content
Log in

Long-term Spot-Coverage Variations of 13 BY Dra G–K Dwarfs

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The results of spot-coverage modeling for 13 active G–K dwarf stars based on many-year photometric observations are presented. The results of UBVRI observations of eight stars performed at the Crimean Astrophysical Observatory were used together with data from the literature in this analysis. The spot-coverage parameters for 13 selected BY Dra active red dwarfs have been redetermined to improve the zonal spot-coverage model for the stellar photospheres, which currently allows for the presence of two active longitudes. Time variations of the spot-activity characteristics of these systems were analyzed with the aim of searching for possible cyclic variations. All the stars, with the exception of OU Gem and BE Cet, show fairly strong correlations between variations in the spot latitudes and spot areas, with absolute values of the correlation coefficients, R(〈ϕ〉, S), ranging from 0.38 to 0.92. For five stars, an anti-correlation between the mean latitude and area of the spots was found (R(〈ϕ〉, S) from–0.24 to–0.73). This behavior may reflect the drift of spots toward the equator in the course of their development. Eight stars feature positive correlations, i.e. the spots drift towards the pole as their areas increase. Nine stars demonstrate activity cycles, which are reflected in photometric variations as well as variations of the spot areas and mean latitudes. The periods of the latitude drift of the spots are found for five stars; the magnitudes of the spot-latitude drift rates are lower than the corresponding value for sunspots by a factor of 1.5–3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. F. Chugainov, Inform. Bull. Var. Stars 122, (1966).

  2. I. Yu. Alekseev, Astrophysics 57, 254 (2014).

    Article  ADS  Google Scholar 

  3. A. V. Kozhevnikova and I. Yu. Alekseev, Astron. Rep. 59, 937 (2015).

    Article  ADS  Google Scholar 

  4. G. Cutispoto, S. Messina, and M. Rodonó, Astron. Astrophys. 400, 659 (2003).

    Article  ADS  Google Scholar 

  5. I. Yu. Alekseev, Low-Mass Spotted Stars (Astro-Print, Odessa, 2001) [in Russian].

    Google Scholar 

  6. I. Yu. Alekseev and A. V. Kozhevnikova, Astron. Rep. 61, 221 (2017).

    Article  ADS  Google Scholar 

  7. V. Piirola, Observ. Astrophys. Lab. Univ. Helsinki Report 6, 151 (1984).

    ADS  Google Scholar 

  8. B. W. Bopp, P. V. Noah, A. Klimke, and J. Africano, Astrophys. J. 249, 210 (1981).

    Article  ADS  Google Scholar 

  9. S. P. Järvinen, S. V. Berdyugina, and K. G. Strassmeier, Astron. Astrophys. 440, 735 (2005).

    Article  ADS  Google Scholar 

  10. G. W. Henry, F. C. Fekel, and D. S. Hall, Astron. J. 110, 2926 (1995).

    Article  ADS  Google Scholar 

  11. I. Yu. Alekseev, Izv. Krymsk. Astrofiz. Observ. 104, 272 (2008).

    Google Scholar 

  12. S. V. Berdyugina, A. V. Berdyugin, I. V. Ilyin, and I. Tuominen, Astron. Astrophys. 350, 626 (1999).

    ADS  Google Scholar 

  13. I. Yu. Alekseev and O. V. Kozlova, Astrophysics 43, 245 (2000).

    Article  ADS  Google Scholar 

  14. I. Yu. Alekseev and N. I. Bondar’, Astron. Rep. 42, 655 (1998).

    ADS  Google Scholar 

  15. I. Yu. Alekseev and O. V. Kozlova, Astrophysics 46, 28 (2003).

    Article  ADS  Google Scholar 

  16. I. Yu. Alekseev and O. V. Kozlova, Astron. Astrophys. 396, 203 (2002).

    Article  ADS  Google Scholar 

  17. K. G. Strassmeier, J. B. Rice, W. H. Wehlau, G. M. Hill, and J. M. Mattews, Astron. Astrophys. 268, 671 (1993).

    ADS  Google Scholar 

  18. J. B. Rice and K. G. Strassmeier, Astron. Astrophys. 336, 972 (1998).

    ADS  Google Scholar 

  19. S. V. Berdyugina, J. Pelt, and I. Tuominen, Astron. Astrophys. 394, 505 (2002).

    Article  ADS  Google Scholar 

  20. Zs. Kövári, K. G. Strassmeier, Th. Granzer, M. Weber, K. Oláh, and J. B. Rice, Astron. Astrophys. 417, 1047 (2004).

    Article  ADS  Google Scholar 

  21. A. Frasca, Zs. Kövári, K. G. Strassmeier, and K. Biazzo, Astron. Astrophys. 481, 229 (2008).

    Article  ADS  Google Scholar 

  22. E. M. Cole, T. Hackman, M. J. Käpylä, I. V. Ilyin, O. Kochukhov, and N. E. Piskunov, Astron. Astrophys. 581, A69 (2015).

    Article  ADS  Google Scholar 

  23. K. Oláh, Z. Kolláth, and K. G. Strassmeier, Astron. Astrophys. 356, 643 (2000).

    ADS  Google Scholar 

  24. Ju. Lehtinen, L. Jetsu, T. Hackman, P. Kajatkari, and G.W. Henry, Astron. Astrophys. 588, L38 (2016).

    Article  ADS  Google Scholar 

  25. M. A. Livshits, I. Yu. Alekseev, and M. M. Katsova, Astron. Rep. 47, 562 (2003).

    Article  ADS  Google Scholar 

  26. I. Yu. Alekseev, Solar Phys. 224, 187 (2004).

    Article  ADS  Google Scholar 

  27. P. F. Chugainov, M. N. Lovkaya, and G. V. Zaitseva, Inform. Bull. Var. Stars 3680 (1991).

  28. J. D. Dorren and E. F. Guinan, Astrophys. J. 428, 805 (1994).

    Article  ADS  Google Scholar 

  29. S. Messina and E. F. Guinan, Astron. Astrophys. 393, 225 (2002).

    Article  ADS  Google Scholar 

  30. S. Messina and E. F. Guinan, Astron. Astrophys. 409, 1017 (2003).

    Article  ADS  Google Scholar 

  31. K. G. Strassmeier and J. B. Rice, Astron. Astrophys. 330, 685 (1998).

    ADS  Google Scholar 

  32. S. P. Järvinen, S. V. Berdyugina, H. Korhonen, I. V. Ilyin, and I. Tuominen, Astron. Astrophys. 472, 887 (2007).

    Article  ADS  Google Scholar 

  33. I. A. Waite, S. C. Marsden, B. D. Carter, P. Petit, S. V. Jeffers, J. Morin, A. A. Vidotto, J.-F. Donati, et al., Mon. Not. R. Astron. Soc. 465, 2076 (2017).

    Article  ADS  Google Scholar 

  34. J. D. Dorren, M. Güdel, and E. F. Guinan, Astrophys. J. 448, 431 (1995).

    Article  ADS  Google Scholar 

  35. S. L. Baliunas, R. A. Donahue, W. H. Soon, et al., Astrophys. J. 438, 269 (1995).

    Article  ADS  Google Scholar 

  36. D. Soderblom, Astron. J. 90, 2103 (1985).

    Article  ADS  Google Scholar 

  37. S. Messina, E. F. Guinan, A. F. Lanza, and C. Ambruster, Astron. Astrophys. 347, 249 (1999).

    ADS  Google Scholar 

  38. C. R. Sturch and H. L. Helfer, Astron. J. 77, 726 (1972).

    Article  ADS  Google Scholar 

  39. L. Hartmann, B. W. Bopp, M. Dussault, et al., Astrophys. J. 249, 262 (1981).

    Article  Google Scholar 

  40. N. I. Bondar’, Astron. Rep. 59, 221 (2015).

    Article  ADS  Google Scholar 

  41. M. J. Phillips and L. Hartmann, Astrophys. J. 224, 182 (1978).

    Article  ADS  Google Scholar 

  42. B. R. Pettersen, K. Oláh, and W. H. Sandmann, Astron. Astrophys. Suppl. Ser. 96, 497 (1992).

    ADS  Google Scholar 

  43. P. F. Chugainov, Izv. Krymsk. Astrofiz. Observ. 61, 124 (1980).

    ADS  Google Scholar 

  44. E. J. Gaidos, G. W. Henry, and S. M. Henry, Astron. J. 120, 1006 (2000).

    Article  ADS  Google Scholar 

  45. G. W. Lockwood, B. A. Skiff, G. W. Henry, S. M. Henry, R. R. Radick, et al., Astrophys. J. Suppl. Ser. 171, 260 (2007).

    Article  ADS  Google Scholar 

  46. D. S. Evans, Mon. Not. R. Astron. Soc. 119, 526 (1959).

    Article  ADS  Google Scholar 

  47. A. Udalski and E. H. Geyer, Inform. Bull. Var. Stars 2525 (1984).

  48. A. Udalski and E. H. Geyer, Inform. Bull. Var. Stars 2691 (1985).

  49. G. Cutispoto, Astron. Astrophys. Suppl. Ser. 131, 321 (1998).

    Article  ADS  Google Scholar 

  50. T. Lloyd-Evans and M. C. J. Koen, South. Afr. Astron. Obs. Circ. 11, 21 (1987).

    ADS  Google Scholar 

  51. G. Cutispoto, S. Messina, and M. Rodonó, Astron. Astrophys. 367, 810 (2001).

    Article  ADS  Google Scholar 

  52. A. Washüttl and K. G. Strassmeier, Astron. Astrophys. 370, 218 (2001).

    Article  ADS  Google Scholar 

  53. P. J. Amado and M. Zboril, Astron. Astophys. 381, 517 (2002).

    Article  ADS  Google Scholar 

  54. G. W. Lockwood, B. A. Skiff, and R. R. Radick, Astrophys. J. 485, 789 (1997).

    Article  ADS  Google Scholar 

  55. M. M. Katsova, M. A. Livshits, and G. Belvedere, Solar Phys. 216, 353 (2003).

    Article  ADS  Google Scholar 

  56. K. Oláh, Z. Kolláth, Th. Granzer, K. G. Strassmeier, A. F. Lanza, S. P. Järvinen, H. Korhonen, S. L. Baliunas, W. Soon, S. Messina, and G. Cutispoto, Astron. Astrophys. 501, 703 (2009).

    Article  ADS  Google Scholar 

  57. S. Messina, G. Cutispoto, E. F. Guinan, A. F. Lanza, and M. Rodonò, Astron. Astrophys. 447, 293 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Alekseev.

Additional information

Original Russian Text © I.Yu. Alekseev, A.V. Kozhevnikova, 2018, published in Astronomicheskii Zhurnal, 2018, Vol. 95, No. 6, pp. 421–437.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, I.Y., Kozhevnikova, A.V. Long-term Spot-Coverage Variations of 13 BY Dra G–K Dwarfs. Astron. Rep. 62, 396–411 (2018). https://doi.org/10.1134/S1063772918050013

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772918050013

Navigation