Skip to main content
Log in

A photometric study of the eclipsing dwarf nova GY Cnc in quiescence and during an outburst

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The results of photometric observations of the dwarf nova GY Cnc in the Rc filter acquired in 2013–2015 (~3900 orbital cycles, 19 nights in total) are presented, including observations during its outburst in April 2014. The binary’s orbital elements have been refined. The orbital period has changed only insignificantly during the ~30 000P orb since the earlier observations; no systematic O–C variations were detected, only fluctuations within 0.004d on time scales of 1500–2000P orb. A “combined” model is used to solve for the parameters of GY Cnc during two states of the system. The flux from the white dwarf is negligible due to the star’s small size. The temperature of the donor star, T 2 ~ 3667 K (Sp M0.2 V), varies between 3440 and 3900 K (Sp K8.8–M1.7 V). The semi-major axis of the disk is a ~ 0.22a0, on average. In quiescence, a varies within ~40%. The disk has a considerable eccentricity (e ~ 0.2−0.3) for a < 0.2a0. The disk shape becomes more circular (e < 0.1) with increasing a. The outburst of GY Cnc was associated with increased luminosity of the disk due to the parameter α g (related to the viscosity of the disk material) decreasing to 0.1–0.2 and the temperature in the inner parts of the disk increasing twofold, to T in ~ 95 000 K. These changes were apparently due to the infall of matter onto the surface of the white dwarf as the outburst developed. All parameters of the accretion disk in quiescence display considerable variations about their mean values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Warner, Cataclysmic Variable Stars (Cambridge Univ. Press, Cambridge, 1995).

    Book  Google Scholar 

  2. A. W. Shafter, L. L. Clark, J. Holland, and S. J. Williams, Publ. Astron. Soc. Pacif. 112, 1467 (2000).

    Article  ADS  Google Scholar 

  3. H. J. Hagen, D. Groote, D. Engels, and D. Reimers, Astron. Astrophys. Suppl. Ser. 111, 195 (1995).

    ADS  Google Scholar 

  4. W. Voges, B. Aschenbach, Th. Boller, H. Bräuninger, U. Briel, W. Burkert, K. Dennerl, J. Englhauser, R. Gruber, F. Haberl, G. Hartner, G. Hasinger, M. Kürster, E. Pfeffermann, W. Pietsch et. al, Astron. Astrophys. 349, 389 (1999).

  5. N. Bade, D. Engels, W. Voges, V. Beckmann, Th. Boller, L. Cordis, M. Dahlem, J. Englhauser, K. Molthagen, P. Nass, J. Studt, and D. Reimers, Astron. Astrophys. Suppl. Ser. 127, 145 (1998).

    Article  ADS  Google Scholar 

  6. B. T. Gänsicke, R. E. Fried, H.-J. Hagen, K. Beuermann, D. Engels, F. V. Hessman, D. Nogami, and K. Reinsch, Astron. Astrophys. 356, L79 (2000).

    ADS  Google Scholar 

  7. J. R. Thorstensen, Publ. Astron. Soc. Pacif. 112, 1269 (2000).

    Article  ADS  Google Scholar 

  8. T. Kato, R. Ishioka, and M. Uemura, Publ. Astron. Soc. Jpn. 54, 1023 (2002).

    Article  ADS  Google Scholar 

  9. S. Yu. Shugarov, N. A. Katysheva, and P. Kroll, in Stellar Variability, Proceedings of the AFOEV International Conference on Variable Stars, Bourbon-Lancy, France, August 26–28, 2002 (Burillier, Vannes, 2003), p. 95.

    Google Scholar 

  10. W. J. Feline, V. S. Dhillon, T. R. Marsh, C. A. Watson, and S. P. Littlefair, Mon. Not. R. Astron. Soc. 364, 1158 (2005).

    Article  ADS  Google Scholar 

  11. T. S. Khruzina and I. B. Voloshina, Astron. Rep. 59, 366 (2015).

    Article  ADS  Google Scholar 

  12. T. S. Khruzina, Astron. Rep. 42, 180 (1998).

    ADS  Google Scholar 

  13. T. S. Khruzina, Astron. Rep. 55, 425 (2011).

    Article  ADS  Google Scholar 

  14. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  15. D. V. Bisikalo, A. A. Boyarchuk, P. V. Kaigorodov, and O. A. Kuznetsov, Astron. Rep. 47, 809 (2003).

    Article  ADS  Google Scholar 

  16. D. V. Bisikalo, A. A. Boyarchuk, O. A. Kuznetsov, and V. M. Chechetkin, Astron. Rep. 41, 720 (1997).

    ADS  Google Scholar 

  17. D. Himmelblau, Applied Nonlinear Programming (McGraw-Hill, New York, 1972;Mir, Moscow, 1975), p. 163.

    Google Scholar 

  18. T. S. Khruzina, A. M. Cherepashchuk, D. V. Bisikalo, A. A. Boyarchuk, and O. A. Kuznetsov, Astron. Rep. 47, 214 (2003).

    Article  ADS  Google Scholar 

  19. I. B. Voloshina and T. S. Khruzina, Astron. Rep. 56, 819 (2012).

    Article  ADS  Google Scholar 

  20. G. M. H. J. Habets and J. R. W. Heintze, Astron. Astrophys. Suppl. Ser. 46, 193 (1981).

    ADS  Google Scholar 

  21. G. Djurasevic, Astrophys. Space Sci. 240, 317 (1996).

    Article  ADS  Google Scholar 

  22. T. S. Khruzina, P. Yu. Golysheva, N. A. Katysheva, S. Yu. Shugarov, and N. I. Shakura, Astron. Rep. 59, 288 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Khruzina.

Additional information

Original Russian Text  T.S. Khruzina, I.B. Voloshina, V.G. Metlov, 2016, published in Astronomicheskii Zhurnal, 2016, Vol. 93, No. 11, pp. 942–967.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khruzina, T.S., Voloshina, I.B. & Metlov, V.G. A photometric study of the eclipsing dwarf nova GY Cnc in quiescence and during an outburst. Astron. Rep. 60, 971–995 (2016). https://doi.org/10.1134/S1063772916110020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772916110020

Navigation