Skip to main content
Log in

The total number of spicules on the solar surface and their role in heating and mass balanace in the solar corona

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

A critical review of determinations of the number of spicules is presented, and the role of both classical and Type 2 spicules in heating and mass balance in the corona is considered. The total number of Type 2 spicules is determined, together with the upward fluxes of energy and mass to which they give rise. The total number of Type 2 spicules on the solar surface is found to be ~105, close to values obtained in other studies. The associated particle flux toward the corona is 2.5 × 1014 cm−2 s−1, an order of magnitude lower than the corresponding flux for classical spicules. The associated energy flux is 104 erg cm−2 s−1, an order of magnaitude lower than estimates obtained in other studies. The results indicate that Type 2 spicules can supply the mass lost from the corona, but are not able to fully explain coronal energy losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Beckers, Ann. Rev. Astron. Astrophys. 10, 73 (1972).

    Article  ADS  Google Scholar 

  2. A. C. Sterling, Solar Phys. 196, 79 (2000).

    Article  ADS  Google Scholar 

  3. B. De Pontieu, S. McIntosh, V. H. Hansteen, M. Carlsson, C. J. Schrijver, T. D. Tarbell, A. M. Title, R. A. Shine, Y. Suematus, and S. Tsuneta, Publ. Astron. Soc. Jpn. 59, 655 (2007).

    Article  Google Scholar 

  4. O. C. Mohler, Mon. Not. R. Astron. Soc. 111, 630 (1951).

    Article  ADS  Google Scholar 

  5. J. H. Rush and W.O. Roberts, Austral. J. Phys. 7, 230 (1954).

    Article  ADS  Google Scholar 

  6. L. Woltjer, Bull. Astron. Inst. Netherland 12, 165 (1954).

    ADS  Google Scholar 

  7. S. L. Lippincott, Smith. Contr. Astroph. 2, 15 (1957).

    Article  ADS  Google Scholar 

  8. R. G. Athay, Astrophys. J. 129, 164 (1959).

    Article  ADS  Google Scholar 

  9. J. Hiei, Publ. Astron. Soc. Jpn. 15, 277 (1963).

    ADS  Google Scholar 

  10. D. K. Lynch, J. M. Beckrers, and R. B. Dunn, Solar Phys. 30, 63 (1973).

    Article  ADS  Google Scholar 

  11. J. M. Beckers, Solar Phys. 3, 367 (1968).

    ADS  Google Scholar 

  12. J. M. Beckers, Ann. Rev. Astron. Astrophys. 10, 73 (1972).

    Article  ADS  Google Scholar 

  13. Y. Cuny, Astron. Astrophys. 175, 243 (1987).

    ADS  Google Scholar 

  14. A. Bruzek, Zeitschr. Astrophys. 47, 191 (1959).

    ADS  Google Scholar 

  15. J. M. Beckers, Astrophys. J. 168, 648 (1963).

    Article  ADS  Google Scholar 

  16. B. de Pontieu, S. W. McIntosh, M. Calsson, V.H. Hansteen, T. D. Tarbell, P. Boerner, T. Martinez-Sykora, C. J. Schrijver, and A.M. Title, Science 331, 55 (2011).

    Article  ADS  Google Scholar 

  17. R. L. Moore, A. C. Sterling, J. W. Sirtain, and D. A. Folconer, Astrophys. J. 731, L18 (2011).

    Article  ADS  Google Scholar 

  18. D. H. Sekse, L. Rouppe van der Voort, and B. de Pontieu, Astrophys. J. 752, 108 (2012).

    Article  ADS  Google Scholar 

  19. P. G. Judge and M. Carlsson, Astrophys. J. 719, 469 (2010).

    Article  ADS  Google Scholar 

  20. L. Rouppe van der Voort, J. Leenaarts, B. De Ponteiu, M. Carlsson, and G. Vissers, Astrophys. J. 705, 274 (2009).

    ADS  Google Scholar 

  21. L. G. Withbroe and W. Noes, Ann. Rev. Astron. Astrophys. 17, 367 (1977).

    Google Scholar 

  22. Y. Suematsu, H. Wang, and H. Zirin, Astrophys. J. 450, 411 (1995).

    Article  ADS  Google Scholar 

  23. R. G. Athey and T. E. Holzer, Astrophys. J. 255, 743 (1982).

    Article  ADS  Google Scholar 

  24. D. Rabin and R. L. Moore, Astrophys. J. 241, 394 (1980).

    Article  ADS  Google Scholar 

  25. G. W. Pneuman and R. A. Copp, Solar Phys. 57, 49 (1978).

    Article  ADS  Google Scholar 

  26. F. Budnik, K.-P. Schröder, K. Wilhelm, and K.-H. Glassmeier, Astron. Astrophys. 334, L77 (1998).

    ADS  Google Scholar 

  27. B. de Pontieu, S.W. McIntosh, V. H. Hansteen, and C. J. Schrijver, Astrophys. J. 701, L1 (2009).

    Article  ADS  Google Scholar 

  28. J. A. Klimchuk, J. Geophys. Res., Space Phys. 117, A12102 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Mamedov.

Additional information

Original Russian Text © S.G. Mamedov, D.M. Kuli-Zade, Z.F. Alieva, M.M. Musaev, F.R. Mustafa, 2016, published in Astronomicheskii Zhurnal, 2016, Vol. 93, No. 9, pp. 837–842.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamedov, S.G., Kuli-Zade, D.M., Alieva, Z.F. et al. The total number of spicules on the solar surface and their role in heating and mass balanace in the solar corona. Astron. Rep. 60, 848–852 (2016). https://doi.org/10.1134/S1063772916080060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772916080060

Navigation