Skip to main content
Log in

Wind accretion: Theory and observations

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

A review of wind accretion in high-mass X-ray binaries is presented. We focus on different regimes of quasi-spherical accretion onto the neutron star (NS): the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically towards the NS magnetosphere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. These two regimes of accretion are separated by an X-ray luminosity of about 4 × 1036 erg s-1. In the subsonic case, which sets in at lower luminosities, a hot quasi-spherical shell must form around the magnetosphere, and the actual accretion rate onto NS is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh–Taylor instability. In turn, two regimes of subsonic accretion are possible, depending on plasma cooling mechanism (Compton or radiative) near the magnetopshere. The transition from the high-luminosity with Compton cooling to the lowluminosity (Lx ≲ 3 × 1035 erg s-1) with radiative cooling can be responsible for the onset of the off states repeatedly observed in several low-luminosity slowly accreting pulsars, such as Vela X-1, GX 301-2, and 4U 1907+09. The triggering of the transitionmay be due to a switch in the X-ray beam pattern in response to a change in the optical depth in the accretion column with changing luminosity. We also show that in the settling accretion theory, bright X-ray flares (~1038-1040 erg) observed in supergiant fast X-ray transients (SFXT) can be produced by sporadic capture of magnetized stellar wind plasma. At sufficiently low accretion rates, magnetic reconnection can enhance the magnetospheric plasma entry rate, resulting in copious production of X-ray photons, strong Compton cooling and ultimately in unstable accretion of the entire shell. A bright flare develops on the free-fall time scale in the shell, and the typical energy released in an SFXT bright flare corresponds to the mass of the shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Giacconi, H. Gursky, F. R. Paolini, and B. B. Rossi, Phys. Rev. Lett. 9, 439 (1962).

    Article  ADS  Google Scholar 

  2. R. Giacconi, Rev.Mod. Phys. 75, 995 (2003).

    Article  ADS  Google Scholar 

  3. Y. B. Zeldovich and N. I. Shakura, Sov. Astron. 13, 175 (1969).

    ADS  Google Scholar 

  4. R. Giacconi, H. Gursky, E. Kellogg, E. Schreier, and H. Tananbaum, Astrophys. J. Lett. 167, L67 (1971).

    Article  ADS  Google Scholar 

  5. X- and Gamma-Ray Astronomy, Proceedings of 55th IAU Symposium, Madrid, Spain, 11–13 May, 1972, Ed. by H. Bradt and R. Giacconi, IAU Symp., vol. 55 (1973).

  6. A. Hewish, S. J. Bell, J.D.H. Pilkington, P. F. Scott, and R. A. Collins, Nature (London) 217, 709 (1968).

    Article  ADS  Google Scholar 

  7. T. Gold, Nature (London) 218, 731 (1968).

    Article  ADS  Google Scholar 

  8. P. Goldreich and W. H. Julian, Astrophys. J. 157, 869 (1969).

    Article  ADS  Google Scholar 

  9. N. I. Shakura, Sov. Astron. 16, 756 (1973).

    ADS  Google Scholar 

  10. J. E. Pringle and M. J. Rees, Astron. Astrophys. 21, 1 (1972).

    ADS  Google Scholar 

  11. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  12. D. Lynden-Bell, Nature (London) 223, 690 (1969).

    Article  ADS  Google Scholar 

  13. B. A. Fryxell and R. E. Taam, Astrophys. J. 335, 862 (1988).

    Article  ADS  Google Scholar 

  14. M. Ruffert, Astron. Astrophys. 346, 861 (1999).

    ADS  Google Scholar 

  15. T. Nagae, K. Oka, T. Matsuda, H. Fujiwara, I. Hachisu, and H. M. J. Boffin, Astron. Astrophys. 419, 335 (2004).

    Article  ADS  Google Scholar 

  16. J. Arons and S. M. Lea, Astrophys. J. 207, 914 (1976).

    Article  ADS  Google Scholar 

  17. A. F. Illarionov and R. A. Sunyaev, Astron. Astrophys. 39, 185 (1975).

    ADS  Google Scholar 

  18. D. J. Burnard, J. Arons, and S. M. Lea, Astrophys. J. 266, 175 (1983).

    Article  ADS  Google Scholar 

  19. N. Shakura, K. Postnov, A. Kochetkova, and L. Hjalmarsdotter, Mon. Not. R. Astron. Soc. 420, 216 (2012).

    Article  ADS  Google Scholar 

  20. R. F. Elsner and F. K. Lamb, Astrophys. J. 215, 897 (1977).

    Article  ADS  Google Scholar 

  21. N. I. Shakura, K. A. Postnov, A. Y. Kochetkova, and L. Hjalmarsdotter, Eur. Phys. J. Web of Conf. 64, 2001 (2014).

    Article  Google Scholar 

  22. H. Inoue, Y. Ogawara, I. Waki, T. Ohashi, S. Hayakawa, H. Kunieda, F. Nagase, and H. Tsunemi, Publ. Astron. Soc. Jpn. 36, 709 (1984).

    ADS  Google Scholar 

  23. I. Kreykenbohm, P. Kretschmar, J. Wilms, R. Staubert, E. Kendziorra, D. E. Gruber, W. A. Heindl, and R. E. Rothschild, Astron. Astrophys. 341, 141 (1999).

    ADS  Google Scholar 

  24. I. Kreykenbohm, J. Wilms, P. Kretschmar, J. M. Torrejon, K. Pottschmidt, M. Hanke, A. Santangelo, C. Ferrigno, and R. Staubert, Astron. Astrophys. 492, 511 (2008).

    Article  ADS  Google Scholar 

  25. V. Doroshenko, A. Santangelo, and V. Suleimanov, Astron. Astrophys. 529, A52 (2011).

  26. E.Gogus,_I. Kreykenbohm, and T.M. Belloni, Astron. Astrophys. 525, L6 (2011).

    Article  ADS  Google Scholar 

  27. J. J. M. int Zand, T. E. Strohmayer, and A. Baykal, Astrophys. J. Lett. 479, L47 (1997).

    Article  ADS  Google Scholar 

  28. S. S. ahiner, S. C. Inam, and A. Baykal, Mon. Not. R. Astron. Soc. 421, 2079 (2012).

    Article  ADS  Google Scholar 

  29. F. Furst, I. Kreykenbohm, S. Suchy, L. Barragan, J. Wilms, R. E. Rothschild, and K. Pottschmidt, Astron. Astrophys. 525, A73 (2011).

    Article  ADS  Google Scholar 

  30. P. Kretschmar, I. Kreykenbohm, J. Wilms, R. Staubert, W. A. Heindl, D. E. Gruber, and R. E. Rothschild, in Proceedings of the 5th Compton Symposium, Ed. by M. L.McConnell and J. M. Ryan, AIP Conf. Ser. 510, 163 (2000).

    Article  ADS  Google Scholar 

  31. D. Klochkov, R. Staubert, A. Santangelo, R. E. Rothschild, and C. Ferrigno, Astron.Astrophys. 532, A126 (2011).

    Article  ADS  Google Scholar 

  32. A. N. Parmar, N. E.White, and L. Stella, Astrophys. J. 338, 373 (1989).

    Article  ADS  Google Scholar 

  33. F. K. Lamb, C. J. Pethick, and D. Pines, Astrophys. J. 184, 271 (1973).

    Article  ADS  Google Scholar 

  34. N. Shakura, K. Postnov, and L. Hjalmarsdotter, Mon. Not. R. Astron. Soc. 428, 670 (2013).

    Article  ADS  Google Scholar 

  35. L. Sidoli, P. Romano, S. Mereghetti, A. Paizis, S. Vercellone, V. Mangano, and D. Gotz, Astron. Astrophys. 476, 1307 (2007).

    Article  ADS  Google Scholar 

  36. L. J. Pellizza, S. Chaty, and I. Negueruela, Astron. Astrophys. 455, 653 (2006).

    Article  ADS  Google Scholar 

  37. S. Chaty, F. Rahoui, C. Foellmi, J. A. Tomsick, J. Rodriguez, and R. Walter, Astron. Astrophys. 484, 783 (2008).

    Article  ADS  Google Scholar 

  38. F. Rahoui, S. Chaty, P.-O. Lagage, and E. Pantin, Astron. Astrophys. 484, 801 (2008).

    Article  ADS  Google Scholar 

  39. S. Molkov, N. Mowlavi, A. Goldwurm, A. Strong, N. Lund, J. Paul, and T. Oosterbroek, Astron. Telegram 176, 1 (2003).

    ADS  Google Scholar 

  40. R. A. Sunyaev, S. A. Grebenev, A. A. Lutovinov, J. Rodriguez, S. Mereghetti, D. Gotz, and T. Courvoisier, Astron. Telegram 190, 1 (2003).

    ADS  Google Scholar 

  41. S. A. Grebenev, A. A. Lutovinov, and R. A. Sunyaev, Astron. Telegram 192, 1 (2003).

    ADS  Google Scholar 

  42. V. Sguera, E. J. Barlow, A. J. Bird, D. J. Clark, A. J. Dean, A. B. Hill, L. Moran, S. E. Shaw, D. R. Willis, A. Bazzano, P. Ubertini, and A. Malizia, Astron. Astrophys. 444, 221 (2005).

    Article  ADS  Google Scholar 

  43. I. Negueruela, D. M. Smith, P. Reig, S. Chaty, and J. M. Torrejon, in Proceedings of the X-Ray Universe 2005, Ed. by A. Wilson, ESA SP-604 (ESA PublicationsDivision,Noordwijk, 2006), Vol. 1, p. 165.

  44. P. Romano, V. La Parola, S. Vercellone, G. Cusumano, L. Sidoli, H. A. Krimm, C. Pagani, P. Esposito, E. A. Hoversten, J. A. Kennea, K. L. Page, D. N. Burrows, and N. Gehrels, Mon. Not. R. Astron. Soc. 410, 1825 (2011).

    ADS  Google Scholar 

  45. P. Romano, H. A. Krimm, D. M. Palmer, L. Ducci, P. Esposito, S. Vercellone, P. A. Evans, C. Guidorzi, V. Mangano, J. A. Kennea, S. D. Barthelmy, D. N. Burrows, and N. Gehrels, Astron. Astrophys. 562, A2 (2014).

    Article  ADS  Google Scholar 

  46. L. Sidoli, in Proceedings of the 9th INTEGRAL Workshop (2012), id.11. http://pos.sissa.it/cgibin/ reader/conf.cgi?confid=176

  47. S. A. Grebenev and R. A. Sunyaev, Astron. Lett. 33, 149 (2007).

    Article  ADS  Google Scholar 

  48. E. Bozzo, M. Falanga, and L. Stella, Astrophys. J. 683, 1031 (2008).

    Article  ADS  Google Scholar 

  49. J. J. M. in’t Zand, Astron. Astrophys. 441, L1 (2005).

    Article  ADS  Google Scholar 

  50. R. Walter and J. Zurita Heras, Astron. Astrophys. 476, 335 (2007).

    Article  ADS  Google Scholar 

  51. I. Negueruela, J. M. Torrejon, P. Reig, M. Ribo, and D. M. Smith, in A Population Explosion: The Nature and Evolution of X-Ray Binaries in Diverse Environments, Ed. by R. M. Bandyopadhyay, S. Wachter, D. Gelino, and C. R. Gelino, AIP Conf. Proc. 1010, 252 (2008).

    ADS  Google Scholar 

  52. L. Ducci, L. Sidoli, S. Mereghetti, A. Paizis, and P. Romano, Mon. Not. R. Astron. Soc. 398, 2152 (2009).

    Article  ADS  Google Scholar 

  53. L. M. Oskinova, A. Feldmeier, and P. Kretschmar, Mon. Not. R. Astron. Soc. 421, 2820 (2012).

    Article  ADS  Google Scholar 

  54. N. Shakura, K. Postnov, L. Sidoli, and A. Paizis, Mon. Not. R. Astron. Soc. 442, 2325 (2014).

    Article  ADS  Google Scholar 

  55. L. Sidoli, P. Romano, V. Mangano, A. Pellizzoni, J. A. Kennea, G. Cusumano, S. Vercellone, A. Paizis, D. N. Burrows, and N. Gehrels, Astrophys. J. 687, 1230 (2008).

    Article  ADS  Google Scholar 

  56. A. Paizis and L. Sidoli, Mon. Not. R. Astron. Soc. 439, 3439 (2014).

    Article  ADS  Google Scholar 

  57. R. Krivonos, S. Tsygankov, A. Lutovinov, M. Revnivtsev, E. Churazov, and R. Sunyaev, Astron. Astrophys. 545, A27 (2012).

    Article  Google Scholar 

  58. J. Braithwaite, arXiv e-prints (2013).

  59. L. M. Zelenyi and A. V. Milovanov, Phys. Usp. 47, 1 (2004).

    Article  ADS  Google Scholar 

  60. R. Bruno and V. Carbone, Living Rev. Solar Phys. 10, 2 (2013).

    Article  ADS  Google Scholar 

  61. J. Puls, J. S. Vink, and F. Najarro, Astron. Astrophys. Rev. 16, 209 (2008).

    Article  ADS  Google Scholar 

  62. J.W. Dungey, Phys. Rev. Lett. 6, 47 (1961).

    Article  ADS  Google Scholar 

  63. H. J. G. L. M. Lamers, E. P. J. van den Heuvel, and J. A. Petterson, Astron. Astrophys. 49, 327 (1976).

    ADS  Google Scholar 

  64. E. A. Vitrichenko, D. K. Nadyozhin, and T. L. Razinkova, Astron. Lett. 33, 251 (2007).

    Article  ADS  Google Scholar 

  65. E. G. Zweibel and M. Yamada, Ann. Rev. Astron. Astrophys. 47, 291 (2009).

    Article  ADS  Google Scholar 

  66. F. Furst, I. Kreykenbohm, K. Pottschmidt, J. Wilms, M. Hanke, R. E. Rothschild, P. Kretschmar, N. S. Schulz, D. P. Huenemoerder, D. Klochkov, and R. Staubert, Astron. Astrophys. 519, A37 (2010).

    Article  ADS  Google Scholar 

  67. N. I. Shakura, K. A. Postnov, A. Y. Kochetkova, and L. Hjalmarsdotter, Phys. Usp. 56, 321 (2013).

    Article  ADS  Google Scholar 

  68. A. Gonzalez-Galan, E. Kuulkers, P. Kretschmar, S. Larsson, K. Postnov, A. Kochetkova, and M. H. Finger, Astron. Astrophys. 537, A66 (2012).

    Article  ADS  Google Scholar 

  69. K. A. Postnov, N. I. Shakura, A. Y. Kochetkova, and L. Hjalmarsdotter, Eur. Phys. J. Web of Conf. 64, 2002 (2014).

    Article  Google Scholar 

  70. S. P. Drave, A. J. Bird, L. Sidoli, V. Sguera, A. Bazzano, A. B. Hill, and M. E. Goossens, Mon. Not. R. Astron. Soc. 439, 2175 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Shakura.

Additional information

The text was submitted by the authors in English.

Paper was presented at the international conference in honor of Ya.B. Zeldovich 100th Anniversary “Subatomic Particles, Nucleons, Atoms, Universe: Processes and Structure” held in Minsk, Belarus, in March 10–14, 2014. Published by the recommendation of the special Editors: S.Ya. Kilin, R. Ruffini, and G.V. Vereshchagin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakura, N.I., Postnov, K.A., Kochetkova, A.Y. et al. Wind accretion: Theory and observations. Astron. Rep. 59, 645–655 (2015). https://doi.org/10.1134/S1063772915070112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772915070112

Keywords

Navigation