Skip to main content
Log in

Period clustering of anomalous X-ray pulsars

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The question of why the observed periods of anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) cluster in the range 2–12 s is discussed. The possibility that AXPs and SGRs are the descendants of high-mass X-ray binaries that have disintegrated in core-collapse supernova explosions is investigated. The spin periods of neutron stars in high-mass X-ray binaries evolve towards the equilibrium period, which is a few seconds, on average. After the explosion of its massive companion, the neutron star becomes embedded in a dense gaseous envelope, and accretion from this envelope leads to the formation of a residual magnetically levitating disk. It is shown that the expected mass of the disk in this case is 10−7–10−8 M, which is sufficient to support accretion at the rate 1014–1015 g/s over a few thousand years. During this period, the star manifests itself as an isolated X-ray pulsar with a number of parameters similar to those of AXPs and SGRs. The periods of such pulsars can cluster if the lifetime of the residual disk does not exceed the spin-down timescale of the neutron star.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S. Bisnovatyi-Kogan and N. R. Ikhsanov, Astron. Rep. 58, 217 (2014).

    Article  ADS  Google Scholar 

  2. N. R. Ikhsanov, N. G. Beskrovnaya, and Yu. S. Likh, Int. J. Mod. Phys.: Conf. Ser. 28, 1460187 (2014).

    Google Scholar 

  3. V. F. Shvartsman, Sov. Astron. 15, 377 (1971).

    ADS  Google Scholar 

  4. G. S. Bisnovatyi-Kogan and A. A. Ruzmaikin, Astrophys. Space Sci. 28, 45 (1974).

    Article  ADS  Google Scholar 

  5. G. S. Bisnovatyi-Kogan and A. A. Ruzmaikin, Astrophys. Space Sci. 42, 401 (1976).

    Article  ADS  Google Scholar 

  6. I. V. Igumenshchev, R. Narayan, and M. A. Abramowicz, Astrophys. J. 592, 1042 (2003).

    Article  ADS  Google Scholar 

  7. N. R. Ikhsanov and M. H. Finger, Astrophys. J. 753, 1 (2012).

    Article  ADS  Google Scholar 

  8. N. R. Ikhsanov and N. G. Beskrovnaya, Astron. Rep. 56, 589 (2012).

    Article  ADS  Google Scholar 

  9. N. R. Ikhsanov, V. Y. Kim, N. G. Beskrovnaya, and L. A. Pustil’nik, Astrophys. Space Sci. 346, 105 (2013).

    Article  ADS  Google Scholar 

  10. G. S. Bisnovatyi-Kogan and V. M. Chechetkin, Astrophys. Space Sci. 26, 25 (1974).

    Article  ADS  Google Scholar 

  11. G. S. Bisnovatyi-Kogan, V. S. Imshennik, D. K. Nadyozhin, and V. M. Chechetkin, Astrophys. Space Sci. 35, 23 (1975).

    Article  ADS  Google Scholar 

  12. G. S. Bisnovatyi-Kogan and V. M. Chechetkin, Sov. Phys. Usp. 22, 89 (1979).

    Article  ADS  Google Scholar 

  13. D. Viganó, N. Rea, J. A. Pons, R. Perna, D.N. Aguilera, and J. A. Miralles, Mon. Not. R. Astron. Soc. 434, 1123 (2013).

    Article  ADS  Google Scholar 

  14. S. A. Olausen and V. M. Kaspi, Astrophys. J. Suppl. Ser. 212, 6 (2014).

    Article  ADS  Google Scholar 

  15. T. M. Tauris, M. Kramer, and N. Langer, in Neutron Stars and Pulsars: Challenges and Opportunities after 80 years, Ed. by J. van Leeuwen (Cambridge University Press, Cambridge), p. 137 (2013).

  16. D. Branch and K. Nomoto, Astron. Astrophys. 164, L13 (1986).

    ADS  Google Scholar 

  17. M. Colpi, U. Geppert, and D. Page, Astrophys. J. Lett. 529, L29 (2000).

    Article  ADS  Google Scholar 

  18. J. A. Pons, D. Viganò, and N. Rea, Nature Phys. 9, 431 (2013).

    Article  ADS  Google Scholar 

  19. Ü. Ertan, K. Y. Ekşi, M. H. Erkut, and M. A. Alpar, Astrophys. J. 702, 1309 (2009).

    Article  ADS  Google Scholar 

  20. V. Urpin, A. Konnenkov, and U. Geppert, Mon. Not. R. Astron. Soc. 299, 73 (1998).

    Article  ADS  Google Scholar 

  21. D. Bhattacharya and E. P. J. van den Heuvel, Phys. Rep. 203, 1 (1991).

    Article  ADS  Google Scholar 

  22. A. G. Masevich and A. V. Tutukov, Stellar Evolution: Theory and Observations (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  23. A. Yu. Potekhin, Phys. Usp. 53, 1235 (2010).

    Article  ADS  Google Scholar 

  24. I. Caballero and J. Wilms, Mem. Soc. Astron. Ital. 83, 230 (2012).

    ADS  Google Scholar 

  25. A. N. Baushev and G. S. Bisnovatyi-Kogan, Astron. Rep. 43, 241 (1999).

    ADS  Google Scholar 

  26. V. S. Imshennik and D. K. Nadyozhin, Usp. Fiz. Nauk 156, 562 (1988)

    Article  Google Scholar 

  27. S. B. Popov and M. E. Prokhorov, Mon. Not. R. Astron. Soc. 367, 732 (2006).

    Article  ADS  Google Scholar 

  28. F. C. Michel, Nature 333, 644 (1988).

    Article  ADS  Google Scholar 

  29. R. A. Chevalier, Astrophys. J. 346, 847 (1989).

    Article  ADS  Google Scholar 

  30. A. G. Lyne and D. R. Lorimer, Nature 369, 127 (1994).

    Article  ADS  Google Scholar 

  31. Z. Arzoumanian, D. F. Chernoff, and J. M. Cordes, Astrophys. J. 568, 289 (2002).

    Article  ADS  Google Scholar 

  32. N. R. Ikhsanov, Yu. S. Likh, N. G. Beskrovnaya, Astron. Rep. 58, 376 (2014).

    Article  ADS  Google Scholar 

  33. M. Ruffert, Astron. Astrophys. 346, 861 (1999).

    ADS  Google Scholar 

  34. J. T. Gosling, M. F. Thomsen, S. J. Bame, R. C. Elphic, and C. T. Russel, J. Geophys. Res. 96, 14097 (1991).

    Article  ADS  Google Scholar 

  35. S. Mereghetti and L. Stella, Astrophys. J. Lett. 442, L17 (1995).

    Article  ADS  Google Scholar 

  36. J. van Paradijs, R. E. Tamm, and E. P. J. van den Heuvel, Astron. Astrophys. 299, L41 (1995).

    ADS  Google Scholar 

  37. D. Marsden, R. E. Lingenfelter, R. E. Rothschild, and J. C. Higdon, Astrophys. J. 550, 397 (2001).

    Article  ADS  Google Scholar 

  38. J. E. Trümper, A. Zezas, Ü. Ertan, and N. D. Kylafis, Astrophys. J. 764, 49 (2013).

    Article  ADS  Google Scholar 

  39. J. E. Trümper, K. Dennerl, N. D. Kylafis, U. Ertan, and A. Zezas, Astron. Astrophys. 518, A46 (2010).

    Article  ADS  Google Scholar 

  40. R. L. Cooper, A. W. Steiner, and E. F. Brown, Astrophys. J. 702, 660 (2009).

    Article  ADS  Google Scholar 

  41. A. Y. Potekhin and G. Chabrier, Astron. Astrophys. 538, A115 (2012).

    Article  ADS  Google Scholar 

  42. J. Stevens, E. F. Brown, A. Cumming, R. Cyburt, and H. Schatz, Astrophys. J. 791, 106 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Bisnovatyi-Kogan.

Additional information

Original Russian Text © G.S. Bisnovatyi-Kogan, N.R. Ikhsanov, 2015, published in Astronomicheskii Zhurnal, 2015, Vol. 92, No. 6, pp. 462–469.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisnovatyi-Kogan, G.S., Ikhsanov, N.R. Period clustering of anomalous X-ray pulsars. Astron. Rep. 59, 503–509 (2015). https://doi.org/10.1134/S1063772915050017

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772915050017

Keywords

Navigation