Skip to main content
Log in

Nonlinear Localized Longitudinal Waves in a Metamaterial Designed as a “Mass-In-Mass” Chain

  • NONLINEAR ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The article considers a mathematical model of an acoustic (mechanical) metamaterial, which is a chain of oscillators consisting of nonlinear elastic elements and masses, each of which contains an internal nonlinear oscillator. It is shown that, in the long-wavelength approximation, the resulting system of equations can be reduced to the Benjamin–Bon–Mahoney nonlinear evolutionary equation, in the framework of which interaction of three modulated quasi-harmonic waves (wave packets) is studied under the phase matching conditions. We investigate the formation of coupled three-frequency envelope solitons, i.e., wave packets that retain their amplitude–phase profiles as they propagate in the metamaterial due to the compensating effect of nonlinear effects. It is noted that in addition to solutions describing quasi-harmonic processes, the resulting evolutionary equation has an exact analytical solution in the form of a solitary stationary wave (soliton). Differences in the properties of this soliton and the classical Korteweg–de Vries soliton are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. V. A. Burov, V. G. Voloshinov, K. V. Dmitriev, and N. V. Polikarpova, Usp. Fiz. Nauk 181 (11), 1205 (2011).

    Article  Google Scholar 

  2. A. N. Norris and M. R. Haberman, J. Acoust. Soc. Am. 132 (4(2)), 2783 (2012).

    Article  ADS  Google Scholar 

  3. Acoustic Metamaterials and Phononic Crystals, Ed. by P. A. Deymier (Springer-Verlag, Berlin, 2013).

    Google Scholar 

  4. Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking, Ed. by R. V. Craster and S. Guenneau (Springer, Dordrecht, 2013).

    Google Scholar 

  5. Yu. I. Bobrovnitskii, Acoust. Phys. 60 (2), 134 (2014).

    Article  ADS  Google Scholar 

  6. Yu. I. Bobrovnitskii, Acoust. Phys. 61 (3), 255 (2015).

    Article  ADS  Google Scholar 

  7. Yu. I. Bobrovnitskii, T. M. Tomilina, and M. M. Laktionova, Acoust. Phys. 62 (1), 1 (2016).

    Article  ADS  Google Scholar 

  8. V. S. Fedotovskii, Acoust. Phys. 61 (3), 281 (2015).

    Article  ADS  Google Scholar 

  9. J. Li and C. T. Chan, Phys. Rev. E 70, 055602 (2004).

    Article  ADS  Google Scholar 

  10. N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, Nat. Mater. 5, 452 (2006).

    Article  ADS  Google Scholar 

  11. Y. Ding, Z. Liu, C. Qiu, and J. Shi, Phys. Rev. Lett. 99, 093904 (2007).

    Article  ADS  Google Scholar 

  12. Y. Cheng, J. Y. Xu, and X. J. Liu, Phys. Rev. B 77, 045134 (2008).

    Article  ADS  Google Scholar 

  13. C. T. Chan, J. Li, and K. H. Fung, J. Zhejiang Univ. Sci. A 7 (1), 24 (2006).

    Article  Google Scholar 

  14. H. H. Huang, C. T. Sun, and G. L. Huang, Int. J. Eng. Sci. 47, 610 (2009).

    Article  Google Scholar 

  15. I. A. Kunin, Elastic Media with Microstructure I & II (Springer-Verlag, Berlin, Heidelberg, New York, 1982–1983).

  16. M. I. Rabinovich and D. I. Trubetskov, Introduction into Oscillation and Wave Theory (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  17. A. P. Sukhorukov, Nonlinear Wave Interactions in Optics and Radiophysics (Nauka, Fizmatlit, Moscow, 1988) [in Russian].

  18. I. T. Selezov and S. V. Korsunskii, Nonstationary and Nonlinear Waves in Electrically Conducting Mediums (Naukova dumka, Kiev, 1991) [in Russian].

    Google Scholar 

  19. V. L. Krupenin, J. Mach. Manuf. Reliab. 45 (4), 297 (2016).

    Article  Google Scholar 

Download references

Funding

The study was financed by the Russian Science Foundation (project no. 21-19-00813).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Erofeev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erofeev, V.I., Kolesov, D.A. & Malkhanov, A.O. Nonlinear Localized Longitudinal Waves in a Metamaterial Designed as a “Mass-In-Mass” Chain. Acoust. Phys. 68, 423–426 (2022). https://doi.org/10.1134/S1063771022040030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771022040030

Keywords:

Navigation