Skip to main content
Log in

Impact of Treatment Trajectory on Temperature Field Uniformity in Biological Tissue Irradiated by Ultrasound Pulses with Shocks

  • NONLINEAR ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

High intensity focused ultrasound (HIFU) treatments typically involve the ablation of tissue volumes comprising multiple focal sites. One aspect of treatment planning involves the definition of a sequence of ultrasound pulses and corresponding focal sites as the sonication trajectory. Here, numerical simulations of the thermal effects of different trajectories are performed for HIFU exposures delivered to an ex vivo bovine liver sample by a clinical array (Sonalleve V2 3.0T system, Profound Medical Corp., Canada). Simulations consider boiling histotripsy regime with millisecond-long pulses that include shocks. Focusing of the ultrasound beam in tissue was modeled by the Westervelt equation, and the temperature field was modeled by the bioheat equation. To explore different treatment strategies, trajectories were considered with discrete foci located along two or four concentric circles with radii from 2 to 8 mm. Two approaches for traversing these focal sites were compared: In the first approach each discrete focus was sonicated by a sequence of 15 pulses before moving to the next site in the trajectory. In the second approach, each focus was sonicated once before moving to the next site, with sonications over the whole trajectory repeated 15 times. The influence of the trajectory’s size and the pulsing strategy on the temperature field was analyzed. It is shown that the structure of the temperature field is more uniform with a longer time interval between repeated irradiation of each focus, and the optimal time interval ranges from three to six pulse repetition periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. C. R. Hill and J. C. Bamber, Physical Principles of Medical Ultrasonics, Ed. by G. R. ter Haar (John Wiley and Sons, 2004’ Fizmatlit, Moscow, 2008).

  2. M. R. Bailey, V. A. Khokhlova, O. A. Sapozhnikov, S. G. Kargl, and L. A. Crum, Acoust. Phys. 49 (4), 369 (2003).

    Article  ADS  Google Scholar 

  3. L. R. Gavrilov, Focused High Intensive Ultrasound in Medicine (Fazis, Moscow, 2013) [in Russian].

    Google Scholar 

  4. V. A. Khokhlova, J. B. Fowlkes, W. W. Roberts, G. R. Schade, Z. Xu, T. D. Khokhlova, T. L. Hall, and A. D. Maxwell, Int. J. Hyperthermia 31 (2), 145 (2015).

    Article  Google Scholar 

  5. A. D. Maxwell, O. A. Sapozhnikov, M. R. Bailey, L. A. Crum, Z. Xu, B. Fowlkes, C. Cain, and V. A. Khokhlova, Acoust. Today 8 (4), 24 (2012).

    Article  Google Scholar 

  6. V. A. Khokhlova, A. D. Maxwell, T. Khokhlova, W. Kreider, M. Bailey, A. Partanen, N. Farr, and O. Sapozhnikov, in Proc. 14th Int. Symp. for Therapeutic Ultrasound (Las Vegas, 2014).

  7. M. M. Karzova, P. V. Yuldashev, W. Kreider, P. B. Rosnitskiy, T. D. Khokhlova, O. A. Sapozhnikov, and C. Bawiec, A. Partanen, and V. A. Khokhlova, in Proc. 6th Int. Symp. on Focused Ultrasound (Reston, VA, Oct. 21–25, 2018).

  8. M. O. Köhler, C. Mougenot, B. Quesson, and J. Enholm, Med. Phys. 36 (8), 3521 (2009).

    Article  Google Scholar 

  9. P. Yuldashev, S. Shmeleva, S. Ilyin, O. Sapozhnikov, L. Gavrilov, and V. Khokhlova, Phys. Med. Biol. 58 (8), 2537 (2013).

    Article  Google Scholar 

  10. F. A. Duck, Physical Properties of Tissue (Academic Press, London, 1990).

    Google Scholar 

  11. E. A. Filonenko and V. A. Khokhlova, Acoust. Phys. 47 (4), 468 (2001).

    Article  ADS  Google Scholar 

  12. W. Kreider, P. V. Yuldashev, O. A. Sapozhnikov, N. Farr, A. Partanen, M. R. Bailey, and V. A. Khokhlova, IEEE Trans. Ultrason., Ferroelectr., Freq. Control 60 (8), 1683 (2003).

    Article  Google Scholar 

  13. P. V. Yuldashev and V. A. Khokhlova, Acoust. Phys. 57 (3), 334 (2011).

    Article  ADS  Google Scholar 

  14. M. M. Karzova, P. V. Yuldashev, O. A. Sapozhnikov, V. A. Khokhlova, B. W. Cunitz, W. Kreider, and M. R. Bailey, J. Acoust. Soc. Am. 141 (4), 2327 (2017).

    Article  ADS  Google Scholar 

  15. A. D. Maxwell, P. V. Yuldashev, W. Kreider, T. D. Khokhlova, G. R. Schade, T. L. Hall, O. A. Sapozhnikov, M. R. Bailey, and V. A. Khokhlova, IEEE Trans. Ultrason., Ferroelectr., Freq. Control 64 (10), 1542 (2017).

    Article  Google Scholar 

  16. Yu. S. Andriyakhina, M. M. Karzova, P. V. Yuldashev, and V. A. Khokhlova, Acoust. Phys. 65 (2), 141 (2019).

    Article  ADS  Google Scholar 

  17. M. M. Karzova, W. Kreider, A. Partanen, O. A. Sapozhnikov, T. D. Khokhlova, P. V. Yuldashev, ad V. A. Khokhlova, in Proc. 19th Int. Symp. of ISTU / 5th European Symp. of EUFUS (Barcelona, 2019), p. 235.

  18. M. Canney, V. Khokhlova, O. Bessonova, M. Bailey, and L. Crum, Ultrasound Med. Biol. 36, 250 (2010).

    Article  Google Scholar 

  19. T. D. Khokhlova, M. S. Canney, V. A. Khokhlova, O. A. Sapozhnikov, L. A. Crum, and M. R. Bailey, J. Acoust. Soc. Am. 130 (5), 3498 (2011).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to personnel of the Applied Physics Laboratory at the University of Washington for providing experimental acoustic holography data and to L.R. Gavrilov for useful discussions.

Funding

The study was supported by the Russian Foundation for Basic Research (project nos. 20-32-70142, 20-02-00210), the Focused Ultrasound Foundation, and student scholarships from the “BASIS” Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Pestova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pestova, P.A., Karzova, M.M., Yuldashev, P.V. et al. Impact of Treatment Trajectory on Temperature Field Uniformity in Biological Tissue Irradiated by Ultrasound Pulses with Shocks. Acoust. Phys. 67, 250–258 (2021). https://doi.org/10.1134/S106377102103012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377102103012X

Keywords:

Navigation