Skip to main content
Log in

Levitating Force and Stability Analysis of Near-field Acoustic Levitation using Flexural Vibrations of the Plate

  • NONLINEAR ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

In this study, finite element approach is used to simulate the near-field acoustic levitation phenomenon. The resonance frequency of an aluminum plate (driver) around 19 000 Hz corresponding to the strip flexural mode is obtained. Total radiation force due to the strip flexural mode vibrations of driver on the flat surfaced levitating object (reflector) is obtained. Simulation results are validated with the experimental study presented in the literature. Further, some other resonance frequencies of the driver corresponding to the strip flexural mode are obtained. Total radiation forces corresponding to these resonance frequencies are compared. It is observed that same radiation force can be obtained using less energy at lower resonance frequency. The finite element method is further used to study the translational as well as rotational stability of the levitating object. The levitating object can be levitated stably at the displacement antinodes of the flexural mode vibrations of the driver plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. W. A. Oran, L. H. Berge, and H. W. Parker, Rev. Sci. Instrum. 51 (5), 626 (1980).

    Article  ADS  Google Scholar 

  2. W. J. Xie and B. Wei, Appl. Phys. Lett. 79 (6), 881 (2001).

    Article  ADS  Google Scholar 

  3. S. Yadav and A. Gupta, Chin. Phys. Lett. 36 (3), 034302 (2019).

    Article  ADS  Google Scholar 

  4. Y. Hashimoto, Y. Koike, and S. Ueha, J. Acoust. Soc. Am. 100 (4), 2057 (1996).

    Article  ADS  Google Scholar 

  5. T. Yamazaki, J. Hu, K. Nakamura, and S. Ueha, Jpn. J. Appl. Phys. 35 (5B), 3286 (1996).

    Article  ADS  Google Scholar 

  6. J. Hu, K. Nakamura, and S. Ueha, Ultrasonics 35, 459 (1997).

    Article  Google Scholar 

  7. Y. Hashimoto, Y. Koike, and S. Ueha, J. Acoust. Soc. Am. 103 (6), 3230 (1998).

    Article  ADS  Google Scholar 

  8. S. Ueha, Y. Hashimoto, and Y. Koike, Ultrasonics 38, 26 (2000).

    Article  Google Scholar 

  9. E. Matsuo, Y. Koike, K. Nakamura, S. Ueha, and Y. Hashimoto, Ultrasonics 38, 60 (2000).

    Article  Google Scholar 

  10. C.-H. Kim and J.-G. Ih, Ultrasonics 46, 331 (2007).

    Article  Google Scholar 

  11. P. Liu, J. Li, H. Ding, and W. Cao, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 56 (12), 2679 (2009).

    Article  Google Scholar 

  12. T. Amano, Y. Koike, K. Nakamura, S. Ueha, and Y. Hashimoto, Jpn. J. Appl. Phys. 39 (5B), 2982 (2000).

    Article  ADS  Google Scholar 

  13. T. Ide, J. Friend, K. Nakamura, and S. Ueha, Sens. Actuators, A 135, 740 (2007).

    Article  Google Scholar 

  14. D. Koyama, K. Nakamura, and S. Ueha, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 54 (11), 2337 (2007).

    Article  Google Scholar 

  15. D. Koyama, H. Takei, K. Nakamura, and S. Ueha, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 55 (8), 1823 (2008).

    Article  Google Scholar 

  16. D. Koyama and K. Nakamura, Phys. Procedia 3, 1047 (2010).

    Article  ADS  Google Scholar 

  17. K. Chen, S. Gao, Y. Pan, and P. Guo, Appl. Phys. Lett. 109 (12), 123503 (2016).

    Article  ADS  Google Scholar 

  18. W. Li, Y. Liu, and K. Feng, Tribol. Int. 116, 138 (2017).

    Article  Google Scholar 

  19. J.-F. Liu, X.-G. Sun, H.-X. Jiao, H.-X. Chen, S.-M. Hua, and H.-C. Zhang, J. Mech. Sci. Technol. 27 (2), 289 (2013).

    Article  Google Scholar 

  20. J. Li, C. J. Liu, and W. J. Zhang, Acoust. Phys. 63 (1), 125 (2017).

    Article  ADS  Google Scholar 

  21. D. Givoli and B. Neta, J. Comput. Phys. 186, 24 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  22. B.-T. Chu and R. E. Apfel, J. Acoust. Soc. Am. 72 (6), 1673 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saurabh Yadav or Arpan Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S., Gupta, A. Levitating Force and Stability Analysis of Near-field Acoustic Levitation using Flexural Vibrations of the Plate. Acoust. Phys. 67, 120–127 (2021). https://doi.org/10.1134/S1063771021020123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771021020123

Keywords:

Navigation