Skip to main content
Log in

Reflection of Plane Waves at an Interface of Water/Patchy Saturated Porous Media with Underlying Solid Substrate

  • CLASSICAL PROBLEMS OF LINEAR ACOUSTICS AND WAVE THEORY
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The problems with elastic wave reflection at the interface between the water/patchy saturated porous media and the underlying solid matrix are considered. When porous media is saturated by biphasic fluids, the patchy saturation theory can explain the wave dispersion and attenuation better than the classical Biot theory at mesoscopic scales. Based on patchy saturation theory, this paper focuses on the reflection of elastic waves by patchy saturated porous media inclusion in layered media. Using numerical calculation, the reflection coefficients with different excitation frequencies, water saturations, and porous media depths are discussed. The results show that the differences between two kinds of patchy saturated porous media cases in the oil-water model are lower than those between the same two cases in the gas-water model. Low water saturation and high water saturation have significant effects on the reflection coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. R. D. Stoll and T. K. Kan, J. Acoust. Soc. Am. 70 (S1), 149 (1981).

    Article  ADS  Google Scholar 

  2. Z. W. Cui and K. X. Wang, Int. J. Eng. Sci. 41 (18) 2179 (2003).

    Article  Google Scholar 

  3. M. Tajuddin and S. J. Hussaini, J. Appl. Geophys. 58, 59 (2006).

    Article  Google Scholar 

  4. M. G. Markov, Acoust. Phys. 51, S115 (2005).

    Article  ADS  Google Scholar 

  5. M. G. Markov, Acoust. Phys. 52 (4), 429 (2006).

    Article  ADS  Google Scholar 

  6. M. G. Markov, Izv., Phys. Solid Earth 45 (9), 769 (2009).

    Article  Google Scholar 

  7. S. Z. Dunin and V. N. Nikolaevskii, Acoust. Phys. 51, S61 (2005).

    Article  ADS  Google Scholar 

  8. V. N. Nikolaevskii and G. S. Stepanova, Acoust. Phys. 51, S131 (2005).

    Article  ADS  Google Scholar 

  9. Z. J. Dai, Z. B. Kuang, and S. X. Zhao, Int. J. Rock Mech. Min. Sci. 43, 961 (2006).

    Article  Google Scholar 

  10. J. T. Wang, F. Jin, and C. H. Zhang, Ocean Eng. 63, 8 (2013).

    Article  Google Scholar 

  11. D. D. Lyu, J. T. Wang, F. Jin, and C. H. Zhang, Transp. Porous Media 103, 25 (2014). https://doi.org/10.1007/s11242-014-0286-7

    Article  MathSciNet  Google Scholar 

  12. W. Y. Chen, Z. H. Wang, K. Zhao, G. Chen, and X. J. Li, Geophys. J. Int. 203, 213 (2015).

    Article  ADS  Google Scholar 

  13. N. C. Dutta and H. Odé, Geophysics 44, 1777 (1979).

    Article  ADS  Google Scholar 

  14. N. C. Dutta and H. Odé, Geophysics 44, 1789 (1979).

    Article  ADS  Google Scholar 

  15. N. C. Dutta and A. J. Seriff, Geophysics 44, 1806 (1979).

    Article  ADS  Google Scholar 

  16. G. A. Gist, Geophysics 59, 1100 (1994).

    Article  ADS  Google Scholar 

  17. D. L. J. Johnson, Acoust. Soc. Am. 110 (2), 682 (2001). https://doi.org/10.1121/1.1381021

    Article  ADS  Google Scholar 

  18. S. R. Pride, Hydrogeophysics, Ed. by Y. Rubin and S. Hubbard (Springer, 2005), p. 253.

    Google Scholar 

  19. S. R. Pride, J. G. Berryman, and J. M. J. Harris, Geophys. Res. 109, B01201 (2004). https://doi.org/10.1029/2003JB002639

    Article  ADS  Google Scholar 

  20. A. N. Norris, J. Acoust. Soc. Am. 94, 359 (1993). https://doi.org/10.1121/1.407101

    Article  ADS  Google Scholar 

  21. A. A. Abrashkin, V. S. Averbakh, S. N. Vlasov, Yu. M. Zaslavskii, I. A. Soustova, R. A. Sudarikov, and Yu. I. Troitskaya, Acoust. Phys. 51, S12 (2005).

    Article  ADS  Google Scholar 

  22. S. K. Tomar and A. Arora, Int. J. Solids Struct. 43, 1991 (2006).

    Article  Google Scholar 

  23. K. Tuncay and M. Y. J. Corapcioglu, Appl. Mech. 64, 313 (1997).

    Article  Google Scholar 

  24. B. Quintal, S. M. Schmalholz, and Y. Y. Podladchikov, Geophysics 76 (2), N1 (2001).

    Article  Google Scholar 

  25. T. M. Müller and B. Gurevich, Geophysics 69, 1166 (2004). https://doi.org/10.1190/1.1801934

    Article  ADS  Google Scholar 

  26. T. M. Müller, B. Gurevich, and M. Lebedev, Geophysics 75 (5), 75A147 (2010).

  27. J. Toms, T. M. Müller, and B. Gurevich, Geophys. Prospect 55 (5), 671 (2007).

    Article  ADS  Google Scholar 

  28. B. Dupuy and A. Stoves, Geophysics 79 (1), B19 (2014).

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China under the contracts (nos. 41374147, 41474098, 11134011) and the Natural Science Foundation of Jilin Province of China (Grant no. 20180101282JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwen Cui.

APPENDIX A

APPENDIX A

The elements of the matrix [M] in Eq. (34) are given by:

$$\begin{gathered} {{M}_{{11}}} = {{\sigma }_{i}}{\kern 1pt} {\kern 1pt} ,\,\,\,\,{{M}_{{12}}} = (1 + {{\alpha }_{{p1}}})\sigma _{{p1}}^{{}}, \\ {{M}_{{13}}} = (1 + {{\alpha }_{{p2}}})\sigma _{{p2}}^{{}},\,\,\,\,{{M}_{{14}}} = (1 + {{\alpha }_{s}})l_{s}^{{}}, \\ {{M}_{{15}}} = - (1 + {{\alpha }_{{p1}}})\sigma _{{p1}}^{{}}, \\ \end{gathered} $$
$$\begin{gathered} {{M}_{{16}}} = - (1 + {{\alpha }_{{p2}}})\sigma _{{p2}}^{{}}, \\ {{M}_{{17}}} = (1 + {{\alpha }_{s}})l_{s}^{{}},\,\,\,\,{{M}_{{18}}} = {{M}_{{19}}} = 0; \\ \end{gathered} $$
$$\begin{gathered} {{M}_{{21}}} = - {{\rho }_{w}}{{\omega }^{2}}, \\ {{M}_{{22}}} = {{M}_{{25}}} = (C(\omega ) + M(\omega ){{\alpha }_{{p1}}})k_{{p1}}^{2}, \\ {{M}_{{23}}} = {{M}_{{26}}} = (C(\omega ) + M(\omega ){{\alpha }_{{p2}}})k_{{p2}}^{2}, \\ \end{gathered} $$
$${{M}_{{24}}} = {{M}_{{27}}} = {{M}_{{28}}} = {{M}_{{29}}} = 0;$$
$$\begin{gathered} {{M}_{{31}}} = {{\rho }_{w}}{{\omega }^{2}},\,\,\,\,{{M}_{{32}}} = {{M}_{{35}}} = 2G(\omega )l_{{p1}}^{2} \\ - \,\,(H(\omega ) + C(\omega ){{\alpha }_{{p1}}})k_{{p1}}^{2}, \\ \end{gathered} $$
$${{M}_{{33}}} = {{M}_{{36}}} = 2G(\omega )l_{{p2}}^{2} - (H(\omega ) + C(\omega ){{\alpha }_{{p2}}})k_{{p2}}^{2},$$
$$\begin{gathered} {{M}_{{34}}} = - 2G(\omega )l_{s}^{{}}\sigma _{s}^{{}}, \\ {{M}_{{37}}} = 2G(\omega )l_{s}^{{}}\sigma _{s}^{{}},\,\,\,\,{{M}_{{38}}} = {{M}_{{39}}} = 0; \\ \end{gathered} $$
$$\begin{gathered} {{M}_{{41}}} = 0,\,\,\,\,{{M}_{{42}}} = - 2l_{{p1}}^{{}}\sigma _{{p1}}^{{}},\,\,\,\,{{M}_{{43}}} = - 2l_{{p2}}^{{}}\sigma _{{p2}}^{{}}, \\ {{M}_{{44}}} = {{M}_{{47}}} = k_{s}^{2} - 2l_{s}^{2},\,\,\,\,{{M}_{{45}}} = 2l_{{p1}}^{{}}\sigma _{{p1}}^{{}}, \\ \end{gathered} $$
$${{M}_{{46}}} = 2l_{{p2}}^{{}}\sigma _{{p2}}^{{}},{{M}_{{48}}} = {{M}_{{49}}} = 0;$$
$$\begin{gathered} {{M}_{{51}}} = 0,\,\,\,\,{{M}_{{52}}} = \sigma _{{p1}}^{{}}{{e}^{{i\sigma _{{p1}}^{{}}h}}},\,\,\,\,{{M}_{{53}}} = \sigma _{{ps}}^{{}}{{e}^{{i\sigma _{{p2}}^{{}}h}}}, \\ {{M}_{{54}}} = l_{s}^{{}}{{e}^{{i\sigma _{s}^{{}}h}}},\,\,\,\,{{M}_{{55}}} = - \sigma _{{p1}}^{{}}{{e}^{{ - i\sigma _{{p1}}^{{}}h}}}, \\ \end{gathered} $$
$$\begin{gathered} {{M}_{{56}}} = - \sigma _{{p2}}^{{}}{{e}^{{ - i\sigma _{{p2}}^{{}}h}}},\,\,\,\,{{M}_{{57}}} = l_{s}^{{}}{{e}^{{ - i\sigma _{s}^{{}}h}}}, \\ {{M}_{{58}}} = - \sigma _{{tp}}^{{}}{{e}^{{i\sigma _{{tp}}^{{}}h}}},\,\,\,\,{{M}_{{59}}} = - l_{{ts}}^{{}}{{e}^{{i\sigma _{{ts}}^{{}}h}}}; \\ \end{gathered} $$
$$\begin{gathered} {{M}_{{61}}} = 0,\,\,\,\,{{M}_{{62}}} = {{\alpha }_{{p1}}}\sigma _{{p1}}^{{}}{{e}^{{i\sigma _{{p1}}^{{}}h}}}, \\ {{M}_{{63}}} = {{\alpha }_{{p2}}}\sigma _{{p2}}^{{}}{{e}^{{i\sigma _{{p2}}^{{}}h}}},\,\,\,\,{{M}_{{64}}} = {{\alpha }_{s}}l_{s}^{{}}{{e}^{{i\sigma _{s}^{{}}h}}}, \\ {{M}_{{65}}} = - {{\alpha }_{{p1}}}\sigma _{{p1}}^{{}}{{e}^{{ - i\sigma _{{p1}}^{{}}h}}}, \\ \end{gathered} $$
$$\begin{gathered} {{M}_{{66}}} = - {{\alpha }_{{p2}}}l_{{p2}}^{{}}{{e}^{{ - i\sigma _{{p2}}^{{}}h}}},\,\,\,\,{{M}_{{67}}} = {{\alpha }_{s}}l_{s}^{{}}{{e}^{{ - i\sigma _{s}^{{}}h}}}, \\ {{M}_{{68}}} = 0,{{M}_{{69}}} = 0; \\ \end{gathered} $$
$$\begin{gathered} {{M}_{{71}}} = 0,\,\,\,\,{{M}_{{72}}} = l_{{p1}}^{{}}{{e}^{{i\sigma _{{p1}}^{{}}h}}},\,\,\,\,{{M}_{{73}}} = l_{{p2}}^{{}}{{e}^{{i\sigma _{{p2}}^{{}}h}}}, \\ {{M}_{{74}}} = - \sigma _{s}^{{}}{{e}^{{i\sigma _{s}^{{}}h}}},\,\,\,\,{{M}_{{75}}} = {{l}_{{p1}}}{{e}^{{ - i\sigma _{{p1}}^{{}}h}}}, \\ \end{gathered} $$
$$\begin{gathered} {{M}_{{76}}} = l_{{p2}}^{{}}{{e}^{{ - i\sigma _{{p2}}^{{}}h}}},\,\,\,\,{{M}_{{77}}} = \sigma _{s}^{{}}{{e}^{{ - i\sigma _{s}^{{}}h}}}, \\ {{M}_{{78}}} = - l_{{tp}}^{{}}{{e}^{{i\sigma _{{tp}}^{{}}h}}},\,\,\,\,{{M}_{{79}}} = \sigma _{{ts}}^{{}}{{e}^{{i\sigma _{{ts}}^{{}}h}}}; \\ \end{gathered} $$
$$\begin{gathered} {{M}_{{81}}} = 0,\,\,\,\,{{M}_{{82}}} = (2G(\omega )l_{{p1}}^{2} \\ - \,\,(H(\omega ) + C(\omega ){{\alpha }_{{p1}}})k_{{p1}}^{2}){{e}^{{i\sigma _{{p1}}^{{}}h}}}, \\ \end{gathered} $$
$${{M}_{{83}}} = (2G(\omega )l_{{p2}}^{2} - (H(\omega ) + C(\omega ){{\alpha }_{{p2}}})l_{{p2}}^{2}){{e}^{{i\sigma _{{p2}}^{{}}h}}},$$
$$\begin{gathered} {{M}_{{84}}} = - 2G(\omega )l_{s}^{{}}\sigma _{s}^{{}}{{e}^{{i\sigma _{s}^{{}}h}}}, \\ {{M}_{{85}}} = (2G(\omega )l_{{p1}}^{2} - (H(\omega ) + C(\omega ){{\alpha }_{{p1}}})l_{{p1}}^{2}){{e}^{{ - i\sigma _{{p1}}^{{}}h}}}, \\ \end{gathered} $$
$${{M}_{{86}}} = (2G(\omega )l_{{p2}}^{2} - (H(\omega ) + C(\omega ){{\alpha }_{{p2}}})k_{{p2}}^{2}){{e}^{{ - i\sigma _{{p2}}^{{}}h}}},$$
$$\begin{gathered} {{M}_{{87}}} = 2G(\omega )l_{s}^{{}}\sigma _{s}^{{}}{{e}^{{ - i\sigma _{s}^{{}}h}}}, \\ {{M}_{{88}}} = \left( {{{\lambda }_{e}}k_{{tp}}^{2} + 2{{\mu }_{e}}\sigma _{{tp}}^{2}} \right){{e}^{{i\sigma _{{tp}}^{{}}h}}}, \\ {{M}_{{89}}} = 2{{\mu }_{e}}l_{{ts}}^{{}}\sigma _{{ts}}^{{}}{{e}^{{i\sigma _{{ts}}^{{}}h}}}; \\ \end{gathered} $$
$$\begin{gathered} {{M}_{{91}}} = 0,\,\,\,\,{{M}_{{92}}} = - 2G(\omega )l_{{p1}}^{{}}\sigma _{{p1}}^{{}}{{e}^{{i\sigma _{{p1}}^{{}}h}}}, \\ {{M}_{{93}}} = - 2G(\omega )l_{{p2}}^{{}}\sigma _{{p2}}^{{}}{{e}^{{i\sigma _{{p2}}^{{}}h}}}, \\ \end{gathered} $$
$$\begin{gathered} {{M}_{{94}}} = G(\omega )(k_{s}^{2} - 2l_{s}^{2}){{e}^{{i\sigma _{s}^{{}}h}}}, \\ {{M}_{{95}}} = 2G(\omega )l_{{p1}}^{{}}\sigma _{{p1}}^{{}}{{e}^{{ - i\sigma _{{p1}}^{{}}h}}}, \\ {{M}_{{96}}} = 2G(\omega )l_{{p2}}^{{}}\sigma _{{p2}}^{{}}{{e}^{{ - i\sigma _{{p2}}^{{}}h}}}, \\ \end{gathered} $$
$$\begin{gathered} {{M}_{{97}}} = G(\omega )(k_{s}^{2} - 2l_{s}^{2}){{e}^{{ - i\sigma _{s}^{{}}h}}}, \\ {{M}_{{98}}} = 2{{\mu }_{e}}l_{{tp}}^{{}}\sigma _{{tp}}^{{}}{{e}^{{i\sigma _{{tp}}^{{}}h}}}, \\ {{M}_{{99}}} = - {{\mu }_{e}}(k_{{ts}}^{2} - 2l_{{ts}}^{2}){{e}^{{i\sigma _{{ts}}^{{}}h}}}; \\ \end{gathered} $$

where \({{k}_{{p1}}}\), \({{k}_{{p2}}}\), \({{k}_{s}}\) and \({{k}_{{tp}}}\), \({{k}_{{ts}}}\) are the wave numbers of the p1-, p2-, S-waves in the porous media and P-, S-waves in the solid, respectively. They are given by

$$\begin{gathered} k_{{p1}}^{2} = l_{{p1}}^{2} + \sigma _{{p1}}^{2},\,\,\,\,k_{{p2}}^{2} = l_{{p2}}^{2} + \sigma _{{p2}}^{2}, \\ k_{s}^{2} = l_{s}^{2} + \sigma _{s}^{2},\,\,\,\,k_{{tp}}^{2} = l_{{tp}}^{2} + \sigma _{{tp}}^{2}, \\ k_{{ts}}^{2} = l_{{ts}}^{2} + \sigma _{{ts}}^{2}. \\ \end{gathered} $$

The matrix [B] in Eq. (48) are given by

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puyi Li, Gao, L., Liu, J. et al. Reflection of Plane Waves at an Interface of Water/Patchy Saturated Porous Media with Underlying Solid Substrate. Acoust. Phys. 66, 461–468 (2020). https://doi.org/10.1134/S1063771020050085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771020050085

Keywords:

Navigation