Skip to main content
Log in

Propagation of Elastic Waves in Dynamically Self-Similar Structures (Dynamic Fractals)

  • PHYSICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The concept of a dynamically self-similar structure (dynamic fractal) is introduced, consisting in the similarity of the dynamic parameters of the cell generatrices. Elastic wave propagation in unbranched dynamically self-similar structures is investigated. It is shown that such structures are equivalent in frequency to a periodic structure with additional fixation; however, the nature of wave propagation in them significantly differs. A dynamic fractal can feature both attenuated waves and waves that increase along the length of the structure; the intensity of wave attenuation is stronger than in a periodic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. Generally speaking, we obtain a family of equivalent periodic structures with proportional parameters and the same frequency spectrum

REFERENCES

  1. Acoustic Metamaterials and Phononic Crystals, Ed. by P. A. Deymier (Springer, Berlin, 2013).

    Google Scholar 

  2. Yu. I. Bobrovnitskii and T. M. Tomilina, Acoust. Phys. 64 (5), 519 (2018).

    Article  ADS  Google Scholar 

  3. B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman and Co., New York, 1982; Institut Komp’yuternykh Issledovanii, Moscow, 2002).

  4. E. Feder, Fractals (Plenum Press, New York, 1988; Mir, Moscow, 1991).

  5. V. V. Zosimov and L. M. Lyamshev, Akust. Zh. 40 (5), 709 (1994).

    Google Scholar 

  6. E. A. Kopyl, Yu. P. Lysanov, and L. M. Lyamshev, Acoust. Phys. 48 (4), 453 (2002).

    Article  ADS  Google Scholar 

  7. L. M. Lyamshev and I. A. Urusovskii, Acoust. Phys. 49 (6), 700 (2003).

    Article  ADS  Google Scholar 

  8. L. Ya. Banakh and M. L. Kempner, Vibrations of Mechanical Systems with Regular Structure (Springer, 2010).

    Book  Google Scholar 

  9. L. Ya. Banakh and O. V. Barmina, J. Mach. Manuf. Reliab. 42 (2), 89 (2013).

    Article  Google Scholar 

  10. T. von Kármán and M. A. Biot, Mathematical Methods in Engineering; An introduction to the Mathematical Treatment of Engineering Problems (McGraw-Hill, New York, London, 1940; Gostekhizdat, Moscow, 1948).

  11. M. I. Rabinovich and D. I. Trubetskov, Introduction into Theory of Oscillations and Waves (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  12. M. A. Isakovich, General Acoustics (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  13. N. V. Karlov and N. A. Kirichenko, Oscillations, Waves, Structures (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  14. M. A. Mironov, Akust. Zh., No. 3, 546 (1988).

  15. M. A. Mironov and V. V. Pislyakov, Acoust. Phys. 48 (3), 347 (2002).

    Article  ADS  Google Scholar 

  16. V. A. Postnov and I. A. Kharkhurim, Finite Elements Method for Calculating Ship Structures (Sudostroenie, Leningrad, 1974) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks Prof. Yu.I. Bobrovnitskii for discussion of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Ya. Banakh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banakh, L.Y. Propagation of Elastic Waves in Dynamically Self-Similar Structures (Dynamic Fractals). Acoust. Phys. 66, 250–256 (2020). https://doi.org/10.1134/S1063771020020013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771020020013

Keywords:

Navigation