Skip to main content
Log in

Surface Acoustic Wave Characteristics with a Layered Structure of IDT/θ° YX-LiTaO3/SiO2/AlN/diamond

  • PHYSICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

A new layered surface acoustic wave (SAW) structure was proposed by Murata Co., Ltd recently. It was reported that such structure could achieve an incredible high performance including a higher quality factor Q and electromechanical coupling coefficient K2. For deeply understanding propagating characteristics and optimizing the performance of the SAWs in such structure, a layered structure of IDT/θ° YX-LiTaO3/SiO2/AlN/Diamond with different structural parameters were theoretically investigated by FEM method. The calculated admittance shows that four eigenmodes simultaneously exist in such layered structure including the main mode SH SAW. And compared with the Traditional SAW structure, the main mode could achieve a higher value of K2 with sacrificing its velocity a little. Different metal layers (Au, Al, and Cu) were examined as the electrode material. With Au employed, the K2 of the main mode is a little larger resulting from better suppression of the spurious modes. The optimum thickness of electrode and piezoelectric layer are 0.2 and 0.02λ, respectively. In this case, the K2 for the SH SAW achieves its maximum value of 12.20% with a large phase velocity of 3608 m/s. Furthermore, the pure SH SAW can be obtained with the Y-cut Euler angle θ from 0° to 60°, where its K2 has a wide range of 8.70 to 13.69%. Consequently, the work provides a theoretical guide for designing SAW devices of different bandwidth and operation frequency with such structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. D. I. Makalkin, B. A. Korshak, and A. P. Brysev, Acoust. Phys. 63 (5), 590 (2017).

    Article  ADS  Google Scholar 

  2. Y. P. Fan and X. J. Ji, Acoust. Phys. 64 (1), 122 (2018).

    Article  ADS  Google Scholar 

  3. K. Y. Hashimoto, in Proc. European Frequency and Time Forum (York, 2016).

  4. G. Kovacs, W. Ruile, M. Jakob, U. Rosler, E. Maier, U. Knauer, and H. Zottl, in Proc. IEEE Ultrasonics Symposium (Montreal, 2004), Vols. 1–3, p. 974.

  5. K. Yamanouchi and S. Hayama, IEEE Trans. Sonics Ultrason. 31 (1), 51 (1985).

    Article  Google Scholar 

  6. S. A. Wilkus, C. S. Hartmann, and R. J. Kansy, in Proc. IEEE Ultrasonics Symposium (San Francisco, CA, 1985).

  7. M. Kadota, T. Nakao, N. Taniguchi, E. Takata, M. Mimura, K. Nishiyama, T. Hada, and T. Komura, in Proc. IEEE Ultrasonics Symposium (Honolulu, HI, 2003), Vols. 1–2, p. 2105.

  8. M. Kadota, T. Nakao, N. Taniguchi, E. Takata, M. Mimura, K. Nishiyama, T. Hada, and T. Komura, in Proc. IEEE Ultrasonics Symposium (Montreal, 2004), Vols. 1–3, p. 1970.

  9. M. Miura, T. Matsuda, Y. Satoh, M. Ueda, O. Ikata, Y. Ebata, and H. Takagi, in Proc. IEEE Ultrasonics Symposium (Montreal, 2004), Vols. 1–3, p. 1322.

  10. X. J. Ji, J. Chen, T. Han, L. Zhou, Q. Z. Zhang, and G. B. Tang, Diamond Relat. Mater. 66, 213 (2016).

    Article  ADS  Google Scholar 

  11. M. Akiyama, K. Kano, and A. Teshigahara, Appl. Phys. Lett. 95, 162107 (2009).

    Article  ADS  Google Scholar 

  12. B. Abbott and K. Kokkonen, in Proc. IEEE Int. Ultrasonics Symposium (Tours, 2016).

  13. H. Nakanishi, H. Nakamura, T. Tsurunari, J. Fujiwara, Y. Hamaoka, and K. Hashimoto, Jpn. J. Appl. Phys. 51 (7), 07GC16 (2012).

    Article  Google Scholar 

  14. T. Omori, T. Suyama, K. Shimada, C. J. Ahn, M. Yamaguchi, and K. Y. Hashimoto, in Proc. IEEE Int. Ultrasonics Symposium (Orlando, FL, 2011), p. 830.

  15. T. Takai, H. Iwamoto, Y. Takamine, H. Yamazaki, T. Fuyutsume, H. Kyoya, T. Nakao, H. Kando, M. Hiramoto, T. Toi, M. Koshino, and N. Nakajima, in Proc. IEEE Int. Ultrasonics Symposium (Tours, 2016).

  16. F. Benedic, M. B. Assouar, P. Kirsch, D. Moneger, O. Brinza, O. Elmazria, P. Alnot, and A. Gicquel, Diamond Relat. Mater. 17 (4–5), 804 (2008).

    Article  ADS  Google Scholar 

  17. Q. Xiao, C. Dong, X. Ji, P. Cai, and J. Chen, in Proc. Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (Chengdu, 2017).

  18. S. Fujii and C. Jian, in Proc. IEEE Int. Ultrasonics Symposium (Orlando, FL, 2011).

  19. M. El Hakiki, O. Elmazria, M. B. Assouar, V. Mortet, L. Le Brizoual, M. Vanecek, and P. Alnot, Diamond Relat. Mater. 14 (3–7), 1175 (2005).

    Article  ADS  Google Scholar 

  20. X. G. Tian, L. Q. Tao, B. Liu, C. J. Zhou, Y. Yang, and T. L. Ren, IEEE Electron Device Lett. 37 (8), 1063 (2016).

    Article  ADS  Google Scholar 

  21. J. Bjurstrom, G. Wingqvist, V. Yantchev, and I. Katardjiev, J. Micromech. Microeng. 17 (3), 651 (2007).

    Article  ADS  Google Scholar 

  22. K. Hashimoto, H. Asano, T. Omori, and M. Yamaguchi, Jpn. J. Appl. Phys. 43 (5b), 3063 (2004).

    Article  ADS  Google Scholar 

  23. D. A. Gubaidullin and Y. V. Fedorov, Acoust. Phys. 64 (2), 164 (2018).

    Article  ADS  Google Scholar 

  24. M. L. Amamou, Acoust. Phys. 62 (3), 280 (2016).

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation of China (NSFC) [grant nos. 51475306, 51705326 and 11404209].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. J. Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Q., Dai, M., Chen, J. et al. Surface Acoustic Wave Characteristics with a Layered Structure of IDT/θ° YX-LiTaO3/SiO2/AlN/diamond. Acoust. Phys. 65, 652–657 (2019). https://doi.org/10.1134/S1063771019060150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771019060150

Keywords:

Navigation