Skip to main content
Log in

Acoustic Research Method for Burning Flammable Substances

  • ACOUSTIC SIGNAL PROCESSING. COMPUTER SIMULATION
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The effect of acoustic emission is used to study the acoustic radiation accompanying the combustion of flammable substances (alcohols, acetone, crude oil, and petroleum products), and experimental and calculated research results are presented. A set of time series and peak amplitude-frequency responses was formed that characterize the acoustic signals generated by these burning substances. The number of samplings recorded every 22 μs lies in the range of 1.5. × 106 up to 9.7 × 106. Fractal R/S analysis of time series demonstrates the fundamental possibility of identifying (recognizing) the nature of a burning substance. The dependence of the Hurst index H on the nature of a substance is established, and its numerical values are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. V. A. Greshnikov and Yu. B. Drobot, Acoustical Emission (Izd. Standartov, Moscow, 1976) [in Russian].

    Google Scholar 

  2. Jun Zhou, A Study of Acoustic Emission Technique for Concrete Damage Detection. A Report (Michigan Technological University, Houghton, MI, 2011).

    Google Scholar 

  3. N. A. Semashko, V. I. Shport, B. N. Mar’in, et al., Acoustical Emission for Experimental Materials Science, Ed. by N. A. Semashko (Mashinostroenie, Moscow, 2002) [in Russian].

    Google Scholar 

  4. L. M. Spasova and M. I. Ojovan, J. Nucl. Mater. 375 (3), 347 (2008).

    Article  ADS  Google Scholar 

  5. J. Piao, H. Shoji, T. Murakami, R. Shiina, and S. Harada, Mater. Trans. 56 (9), 1496 (2015).

    Article  Google Scholar 

  6. S. N. Zadumin, Kh. B. Khokonov, and Kh. B. Shokarov, Zh. Eksp. Teor. Fiz. 68 (4), 1316 (1975).

    Google Scholar 

  7. A. N. Smirnov and A. N. Dement’ev, Zh. Fiz. Khim. 59 (7), 1719 (1985).

    Google Scholar 

  8. S. I. Builo and D. M. Kuznetsov, Russ. J. Nondestr. Test. 46 (9), 684 (2010).

    Article  Google Scholar 

  9. A. N. Smirnov, Ross. Khim. Zh. 45, 29 (2001).

    Google Scholar 

  10. D. M. Kuznetsov, V. L. Gaponov, Yu. A. Gaidukova, and E. E. Maslova, Sovrem. Naukoemkie Tekhnol., No. 4, 74 (2018).

  11. E. G. Klimchuk and A. L. Parakhonskii, Uch. Zap. Fiz. Fak. Mosk. Univ., No. 6, 146 322-1 (2014).

  12. A. L. Pirozerskii, E. V. Charnaya, M. K. Lee, L. J. Chang, A. I. Nedbai, Yu. A. Kumzerov, A. V. Fokin, M. I. Samoilovich, E. L. Lebedeva, and A. S. Bugaev, Acoust. Phys. 62 (3), 306 (2016).

    Article  ADS  Google Scholar 

  13. D. M. Kuznetsov, A. N. Smirnov, and A. V. Syroeshkin, Ros. Khim. Zh. 52 (1), 114 (2008).

    Google Scholar 

  14. V. E. Asming, S. V. Baranov, A. N. Vinogradov, Yu. A. Vinogradov and A. V. Fedorov, Acoust. Phys. 62 (5), 583 (2016).

    Article  ADS  Google Scholar 

  15. E. Serris, A. Cameirao, and F. Gruy, in Proc. 32nd European Conference on Acoustic Emission Testing (EWGAE 2016), Prague, September 07–09, 2016, J. Nondestr. Test. 21 (11), 451 (2016).

    Google Scholar 

  16. K. K. Andreev, Thermal Decomposition and Combustion of Explosives (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  17. I. Bossi, P. Ferriello, and L. De Luca, in Proc. 16th Congresso Nazionale Aidaa (Palermo, September 24–28, 2001).

  18. B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman and Co., New York, 1982; Institut Komp’yuternykh Issledovanii, Moscow, 2002).

  19. V. V. Zosimov and L. M. Lyamshev, Akust. Zh. 40 (5), 709 (1994).

    Google Scholar 

  20. E. A. Kopyl, Yu. P. Lysanov, and L. M. Lyamshev, Acoust. Phys. 48 (4), 453 (2002).

    Article  ADS  Google Scholar 

  21. K. Mięsowicz, W. Staszewski, and T. Korbiel, Int. J. Fatigue 83 (2), 109 (2016).

    Article  Google Scholar 

  22. E. Feder, Fractals (Plenum Press, New York, 1988; Mir, Moscow, 1991).

  23. E. E. Peters, Fractal Market Analysis. Applying Chaos Theory to Investment and Economics (Wiley, New York, 1994; Internet-Treiding, Moscow, 2004).

  24. A. A. Potapov, in Proc. 3rd All-Russian Conference “Radiolocation and Radiocommunication” (Moscow, October 26–30, 2009), p. 842.

  25. A. A. Levterov, V. V. Tyutyunik, V. D. Kalugin, and S. V. Ol’khovikov, Prikl. Radioelektron. 16 (1), 23 (2017).

    Google Scholar 

  26. A. A. Levterov, V. D. Kalugin, and V. V. Tyutyunik, Probl. Pozharnoi Bezop., No. 42, 72 (2017).

  27. H. E. Hurst, Trans. Am. Soc. Civ. Eng. 116, 770 (1951).

    Google Scholar 

  28. M. A. Basarab and I. S. Stroganov, Vopr. Kiberbezop., No. 4 (7), 30 (2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Levterov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levterov, A.A. Acoustic Research Method for Burning Flammable Substances. Acoust. Phys. 65, 444–449 (2019). https://doi.org/10.1134/S1063771019040109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771019040109

Keywords:

Navigation