Skip to main content
Log in

Use of Acoustic Thermometry to Determine the Temperature Field in the Human Forearm

  • ACOUSTICS OF LIVING SYSTEMS. BIOMEDICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

In this study, we used passive acoustic thermometry to measure the core (acoustic brightness) temperature in a subject’s forearm while applying warming ointments to the skin. A decrease of 3–6°C in the acoustic brightness temperature was recorded in the first 5–10 min. After this, the acoustic brightness temperature returned to the level prior to application of the ointment. We attribute the decrease in core temperature to the use of a gel at room temperature in the measurements. On the one hand, the application of a cold gel to the skin should reduce the superficial blood flow. However, the use of warming ointments temporarily blocked this process. As a result, cold blood from near-surface capillaries entered the internal tissues of the forearm, cooling the tissue. The effect was taken into account in the heat conduction equation with blood flow by changing a parameter used in the equation: the temperature of flowing blood. The time dependence of the acoustic brightness temperature calculated with the heat conduction equation is consistent with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. L. Winter, E. Oberacker, K. Paul, Y. Ji, C. Oezerdem, P. Ghadjar, A. Thieme, V. Budach, P. Wust, and T. Niendorf, Int. J. Hyperthermia 32 (1), 63 (2016).

    Article  Google Scholar 

  2. A. M. Pouch, T. W. Cary, S. M. Schultz, and C. M. Sehgal, J. Ultrasound Med. 29, 1595 (2010).

    Article  Google Scholar 

  3. J. W. Hand, G. M. J. Van Leeuwen, S. Mizushina, J. B. Van de Kamer, K. Maruyama, T. Sugiura, D. V. Azzopardi, and A. D. Edwards, Phys. Med. Biol. 46, 1885 (2001).

    Article  Google Scholar 

  4. V. A. Burov, P. I. Darialashvili, S. N. Evtukhov, and O. D. Rumyantseva, Acoust. Phys. 50 (3), 243 (2004).

    Article  ADS  Google Scholar 

  5. V. I. Mirgorodskii, V. V. Gerasimov, and S. V. Peshin, Acoust. Phys. 52 (5), 606 (2006).

    Article  ADS  Google Scholar 

  6. E. V. Krotov, M. V. Zhadobov, A. M. Reyman, G. P. Volkov, and V. P. Zharov, Appl. Phys. Lett. 81, 3918 (2002).

    Article  ADS  Google Scholar 

  7. V. I. Passechnik, A. A. Anosov, and K. M. Bograchev, Crit. Rev. Biomed. Eng. 28 (3–4), 603 (2000).

    Article  Google Scholar 

  8. A. A. Anosov, V. I. Pasechnik, and M. G. Isrefilov, Acoust. Phys. 45 (1), 14 (1999).

    ADS  Google Scholar 

  9. A. A. Anosov, A. S. Kazansky, P. V. Subochev, A. D. Mansfel’d, and V. V. Klinshov, J. Acoust. Soc. Am. 137 (4), 1667 (2015).

    Article  ADS  Google Scholar 

  10. A. A. Anosov, P. V. Subochev, A. D. Mansfeld, and A. A. Sharakshane, Ultrasonics 82, 336 (2018).

    Article  Google Scholar 

  11. H. Barcroft and O. G. Edholm, J. Physiol. 102 (1), 5 (1943).

    Article  Google Scholar 

  12. I. I. Zakharchenko and V. I. Pasechnik, Biofizika 36 (4), 655 (1991).

    Google Scholar 

  13. V. V. Gerasimov, Yu. V. Gulyaev, V. I. Mirgorodskii, S. V. Peshin, and V. A. Sablikov, Radiotekh. Elektron. 10, 1904 (1993).

    Google Scholar 

  14. A. A. Anosov, R. V. Belyaev, V. A. Vilkov, A. S. Kazanskii, N. A. Kuryatnikova, and A. D. Mansfel’d, Acoust. Phys. 59 (4), 482 (2013).

    Article  ADS  Google Scholar 

  15. H. H. Pennes, J. Appl. Physiol. 1 (2) (1948).

  16. A. A. Anosov, R. V. Belyaev, V. A. Vilkov, M. V. Dvornikova, V. V. Dvornikova, A. S. Kazanskii, N. A. Kuryatnikova, and A. D. Mansfel’d, Acoust. Phys. 58 (5), 542 (2012).

    Article  ADS  Google Scholar 

  17. A. Lakhssassi, E. Kengne, and H. Semmaoui, Nat. Sci. 2 (12), 1375 (2010).

    Google Scholar 

  18. A. A. Anosov, K. M. Bograchev, and V. I. Pasechnik, Acoust. Phys. 44 (6), 629 (1998).

    ADS  Google Scholar 

  19. A. A. Anosov, R. V. Belyaev, V. A. Vilkov, A. S. Kazanskii, A. D. Mansfel’d, and A. S. Sharakshané, Acoust. Phys. 54 (4), 464 (2008).

    Article  ADS  Google Scholar 

  20. V. I. Passechnik, Ultrasonics 32, 293 (1994).

    Article  Google Scholar 

  21. F. Duck, Physical Properties of Tissue (Academic Press, London, 1990).

    Google Scholar 

Download references

Funding

This work was supported by the “Russian Academic Excellence Project 5-100” and the Russian Foundation for Basic Research, project no. 18-29-02052 mk, as well as partly within the state task of the Institute of Applied Physics, Russian Academy of Sciences, no. 0035-2014-0008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Anosov.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anosov, A.A., Erofeev, A.V. & Mansfel’d, A.D. Use of Acoustic Thermometry to Determine the Temperature Field in the Human Forearm. Acoust. Phys. 65, 460–465 (2019). https://doi.org/10.1134/S106377101904002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377101904002X

Keywords:

Navigation