Skip to main content
Log in

Generalized sidelobe canceler beamforming applied to medical ultrasound imaging

  • Acoustics of Animate Systems. Biomedical Acoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

A generalized sidelobe canceler (GSC) approach is proposed for medical ultrasound imaging. The approach uses a set of adaptive weights instead of traditional non-adaptive weights, thus suppressing the interference and noise signal of echo data. In order to verify the validity of the proposed approach, Field II is applied to obtain the echo data of synthetic aperture (SA) for 13 scattering points and circular cysts. The performance of GSC is compared with SA using boxcar weights and Hamming weights, and is quantified by the full width at half maximum (FWHM) and peak signal-to-noise ratio (PSNR). Imaging of scattering point utilizing SA, SA (hamming), GSC provides FWHMs of 1.13411, 1.68910, 0.36195 mm and PSNRs of 60.65, 57.51, 66.72 dB, respectively. The simulation results of circular cyst also show that GSC can perform better lateral resolution than non-adaptive beamformers. Finally, an experiment is conducted on the basis of actual echo data of an ultrasound system, the imaging result after SA, SA (hamming), GSC provides PWHMs of 2.55778, 3.66776, 1.01346 mm at z = 75.6 mm, and 2.65430, 3.76428, 1.27889 mm at z = 77.3 mm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. D. Chen, S. J. Wen, H. Zhou, and D. Y. Yu, J. Optoelectronics Laser 20 (2), 279–282 (2009), [in Chinese].

  2. Y. Tasinkevych, I. Trots, and A. Nowicki, Ultrasonics 52 (2), 333–342 (2012).

    Article  Google Scholar 

  3. J. A. Jensen, S. I. Nikolov, K. L. Gammelmark, and M. H. Pedersen, Ultrasonics 44 (1), e5–e15 (2006).

    Article  Google Scholar 

  4. M. Albulayli and D. Rakhmatov, IEEE Int. Conf. on Acoustics, Speech and Signal Processing (Icassp), (2013), p. 1061.

    Google Scholar 

  5. P. Wang, N. Cheng, Z.-H. Gong, and L.-H. Wang, Acta Phys. Sin. 64 (23), 238701 (2015). doi 10.7498/aps.64.238701

    Google Scholar 

  6. J. Capon, Proc. IEEE 57 (8), 1408–1418 (1969).

    Article  Google Scholar 

  7. J.-F. Synnevåg, A. Austeng, and S. Holm, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 (9), 1868–1879 (2009).

    Article  Google Scholar 

  8. I. K. Holfort, F. Gran, and J. A. Jensen, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 (2), 314–325 (2009).

    Article  Google Scholar 

  9. J.-F. Synnevåg, A. Austeng, and S. Holm, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 (8), 1606–1613(2007).

    Article  Google Scholar 

  10. J. E. Evans, in Proc. 1st ASSP Workshop Spectral Estimation, Hamilton, ON, Canada, 1981, pp. 134–139.

    Google Scholar 

  11. G. S. Malyshkin and G. B. Sidel’nikov, Acoust. Phys. 60 (5), 570–587 (2014).

    Article  ADS  Google Scholar 

  12. G. S. Malyshkin, A. S. Kuznetsova, and G. B. Sidel’nikov, Acoust. Phys. 62 (2), 235–243 (2016).

    Article  ADS  Google Scholar 

  13. G. S. Malyshkin, V. N. Timofeev, and O. I. Turkalova, Acoust. Phys. 59 (4), 464–473 (2013).

    Article  ADS  Google Scholar 

  14. A. A. Mal’tsev, R. O. Maslennikov, and A. V. Khoryaev, Acoust. Phys. 51 (2), 195–208 (2005).

    Article  ADS  Google Scholar 

  15. X. Zeng, Y. Wang, J. Yu, and Y. Guo, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60 (12), 2670–2676 (2013).

    Article  ADS  Google Scholar 

  16. L. J. Griffiths and I. S. Reed, IEEE Trans. on Aerospace and Electronic Syst. 33(2, part 1), 539–544 (1997).

    Article  ADS  Google Scholar 

  17. Q.-H. Guo and G.-S. Liao, J. Electron. Inform. Technol. 26 (1), 146–150 (2004).

    Google Scholar 

  18. L. Xiang, Radar Sci. Technol. 10, 438 (2012).

    Google Scholar 

  19. Z. Tian, K. L. Bell, and H. L. van Trees, IEEE Trans. On Signal Proc. 49 (6), 1138–1145 (2001).

    Article  ADS  Google Scholar 

  20. T.-J. Shan and T. Kailath, IEEE Trans. Acoust. Speech. Sign. Proc. 33 (3), 527–536 (1985).

    Article  Google Scholar 

  21. J. A. Jensen, Ferroelec. Freq. Contr. 39 (2), 262–267 (1992).

    Article  Google Scholar 

  22. J. A. Jensen, in Proc. 10th Nordic-Baltic Conference on Biomedical Imaging 4(Suppl. 1,Part 1) (1996b), pp. 351–353.

    Google Scholar 

  23. S. Gupta, L. Kaur, R. C. Chauhan, and S. C. Saxena, Digital Signal Processing 17 (3), 542–560, (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Chen.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Chen, X., Wang, Y. et al. Generalized sidelobe canceler beamforming applied to medical ultrasound imaging. Acoust. Phys. 63, 229–236 (2017). https://doi.org/10.1134/S1063771017020087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771017020087

Keywords

Navigation