Skip to main content
Log in

Motion of a group of microparticles in a viscoelastic medium under the action of acoustic radiation force

  • Acoustics of Living Systems. Bioacoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

We theoretically and experimentally substantiate the method of detecting microcalcifications in mammary gland tissue. Calcium salts accumulate in soft tissues, primarily forming clusters of individual microparticles. We study the motion of solid microparticles distributed in a viscoelastic medium. Displacement of particles is caused by the radiation force occurring as a consequence of energy scattering and absorption of an ultrasound beam focused in the particle region. The radiation force acts over the course of 200 μs, after which the medium with distributed particles relaxes to the initial state. Motion of the medium is tracked by the cross-correlation method with short probing pulses following at a frequency of 5 kHz. The presence of solid microparticles leads to a change in the character of motion of the medium after pulsed ultrasound action. The amplitude and duration of displacements increases in comparison to the homogeneous medium, and the motion character itself becomes significantly complicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Picca and E. S. Paredes, Appl. Radiol. 32(9), 29 (2003).

    Google Scholar 

  2. G. M. Tse, P.-H. Tan, A. L. M. Pang, A. P. Y. Tang, and H. S. Cheung, J. Clin. Pathol. 61, 145 (2008).

    Article  Google Scholar 

  3. T. Kurita, Clinical usefulness and future prospects of micropure, in Medical Review 2014. http://www.toshiba-medical.co.jp/tmd/english/library/pdf/TMR-0808-1_MicroPure.pdf

    Google Scholar 

  4. P. M. Shankar, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 932 (2013).

    Article  Google Scholar 

  5. P. V. Lebedev-Stepanov and O. V. Rudenko, Acoust. Phys. 59, 640 (2013).

    Article  ADS  Google Scholar 

  6. V. A. Gusev and O. V. Rudenko, Acoust. Phys. 56, 861 (2010).

    Article  ADS  Google Scholar 

  7. O. V. Rudenko, P. V. Lebedev-Stepanov, V. A. Gusev, A. I. Korobov, B. A. Korshak, N. I. Odina, M. Yu. Izosimova, S. P. Molchanov, and M. V. Alfimov, Acoust. Phys. 56, 935 (2010).

    Article  ADS  Google Scholar 

  8. A. L. Bernassau, Biomed. Microdevices 15, 289 (2013).

    Article  Google Scholar 

  9. A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, Ultrasound in Med. Biol. 24, 419 (1998).

    Article  Google Scholar 

  10. V. G. Andreev, V. N. Dmitriev, Yu. A. Pishchal’nikov, O. V. Rudenko, O. A. Sapozhnikov, and A. P. Sarvazyan, Acoust. Phys. 43, 123 (1997).

    ADS  Google Scholar 

  11. O. A. Sapozhnikov and M. R. Bailey, J. Acoust. Soc. Am. 133, 661 (2013).

    Article  ADS  Google Scholar 

  12. S. R. Aglyamov, A. B. Karpiouk, and Yu. A. Ilinskii, J. Acoust. Soc. Am. 122, 1927 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Andreev.

Additional information

Original Russian Text © V.G. Andreev, A.V. Shanin, I.Yu. Demin, 2014, published in Akusticheskii Zhurnal, 2014, Vol. 60, No. 6, pp. 673–678.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, V.G., Shanin, A.V. & Demin, I.Y. Motion of a group of microparticles in a viscoelastic medium under the action of acoustic radiation force. Acoust. Phys. 60, 704–709 (2014). https://doi.org/10.1134/S1063771014060013

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771014060013

Keywords

Navigation