Skip to main content
Log in

Effect of ultrasound on sodium arsenate induction time and crystallization property during solution crystallization processes

  • Physical Fundamentals of Engineering Acoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The effect of ultrasound vibrations on the cooling crystallization of sodium arsenate in supersaturated solutions was investigated. In particular, the effects of ultrasound vibrations on induction time and crystal size distribution were studied using a laser-based apparatus with relative supersaturation ranging from 1.3 to 1.8. The results show that ultrasound vibrations have a significant effect on reducing induction time and crystal size distribution. The application of ultrasound vibrations to the system resulted in a small change in surface tension; however, the induction time and crystal size significantly decreased. The mean size of sodium arsenate crystals decreased from 398.87 ± 3.27 to 168.68 ± 2.07 μm, as the ultrasound power increases from 26 to 130 W. Ultrasound vibrations significantly reduced the induction time in a highly supersaturated solution compared to that in a low supersaturated solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Oehmen, R. Valerio, and J. Llanos, J. Separat. Purific. Technol. 83, 137 (2011).

    Article  Google Scholar 

  2. Q. L. Zhang, Y. Lin, X. Chen, and N. Y. Gao, J. Hazardous Materials 148, 671 (2007).

    Article  Google Scholar 

  3. R. T. Nickson, J. M. McArthur, P. Ravenscroft, W.G. Burgess, and K. M. Ahmed, Sci. Technol. 15, 403 (2000).

    Google Scholar 

  4. M. F. Hossain, Agric. Ecosyst. Environ. 113, 1 (2006).

    Article  Google Scholar 

  5. D. Chakraborti, M. M. Rahman, K. Paul, U. K. Chowdhury, M. K. Sengupta, D. Lodh, C. R. Chanda, K. C. Saha, and S. C. Mukherjee, Talanta 58, 3 (2002).

    Article  Google Scholar 

  6. P. Mondal, C. B. Majumder, B. Mohanty, J. Hazard. Mater. 137, 464 (2006).

    Article  Google Scholar 

  7. D. Mohan and C. U. Pittman, Jr., J. Hazard. Mater. 142, 1 (2007).

    Article  Google Scholar 

  8. G. Jegadeesan, K. Mondal, and S. B. Lalvani, Environ. Prog. 24, 289 (2005).

    Article  Google Scholar 

  9. J. Kim and M. M. Benjamin, Water Res. 38, 2053 (2004).

    Article  Google Scholar 

  10. J. Ahmad, B. Goldar, and S. Misra, J. Environ. Manag. 74, 173 (2005).

    Article  Google Scholar 

  11. J. W. Mullin, Crystallization (Butterworth-Heinemann, London, 2001).

    Google Scholar 

  12. S. A. Bakai, O. I. Volchok, P. I. Stoev, N. V. Kamyshanchenko, and E. S. Kungurtsev, Acoust. Phys. 58, 277 (2012).

    Article  ADS  Google Scholar 

  13. Q. Zhang, W. J. Huang, L. Shi, R. B. Huang, and L. S. Zhang, Huaxue Tongbao 1, 44 (1997).

    ADS  Google Scholar 

  14. P. Mougin, D. Wilkinson, K. J. Roberts, R. Jack, and P. Kippax, Powder Technol. 134, 243 (2003).

    Article  Google Scholar 

  15. J. M. Kima, S. M. Chang, K. S. Kim, M. K. Chung, and W. S. Kim, Colloids Surfaces A 375, 193 (2011).

    Article  Google Scholar 

  16. N. Amara, B. Ratsimba, A. M. Wilhelm, and H. Bel- mas, Ultrasonics Sonochemistry 8, 265 (2001).

    Article  Google Scholar 

  17. C. Vironea, H. J. M. Kramer, G. M. van Rosmalen, and A. H. Stoopb, J. Crystal Growth 249, 9 (2006).

    Article  ADS  Google Scholar 

  18. Z. Guo, A. G. Jones, N. Li, J. Colloid Interface Sci. 297, 190 (2006).

    Article  Google Scholar 

  19. O. S. Pokrovsky, J. Crystal Growth 186, 233 (1998).

    Article  ADS  Google Scholar 

  20. J. K. Wang, Y. Liu, and Q. X. Yin, Chinese J. Chem. Eng. 10, 375 (2002).

    Google Scholar 

  21. N. A. Mitchell, P. J. Frawley, and C. T. O’Ciardha, J. Crystal Growth 321, 91 (2011).

    Article  ADS  Google Scholar 

  22. H. X. Hao, J. K. Wang, and Y. L. Wang. J. Crystal Growth 274, 545 (2005).

    Article  ADS  Google Scholar 

  23. A. Myerson, Handbook of Industrial Crystallization (Butterworths-Heinemann, London, 2002).

    Google Scholar 

  24. N. Kubota, J. Crystal Growth 312, 548 (2010).

    Article  ADS  Google Scholar 

  25. V. V. Kozhushko, G. Paltauf, and H. Krenn, Acoust. Phys. 59, 250 (2013).

    Article  ADS  Google Scholar 

  26. Z. Guo, M. Zhang, H. Li, and J. Wang, J. Crystal Growth 273, 555 (2005).

    Article  ADS  Google Scholar 

  27. K. V. Saban, T. Jini, and G. Varghese, Cryst. Res. Technol. 40, 748 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guisheng Zeng.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, G., Wang, X., Luo, S. et al. Effect of ultrasound on sodium arsenate induction time and crystallization property during solution crystallization processes. Acoust. Phys. 60, 356–360 (2014). https://doi.org/10.1134/S1063771014030063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771014030063

Keywords

Navigation