Skip to main content
Log in

Application of the Methods Used to Interpret the Electron Spectroscopy Spectra to Interpret Ion Spectroscopy Signals

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

An analytical model for describing the energy spectra of light medium-energy ions reflected from the surface of a solid, or medium-energy ion spectra (MEIS), is constructed. The method is based on the OKG (Oswald–Kasper–Gaukler) method, which has been reliably tested and widely used in electron spectroscopy. A technique is developed for interpreting the MEIS spectra of ions reflected from layered inhomogeneous samples. In this paper, we show that the interpretation of MEIS data based on the use of data available in the literature on the average energy loss per unit length (stopping power) can lead to such significant errors that it does not allow us to consider MEIS as a quantitative technique. It is pointed out that the approach developed in this paper makes it possible to successfully test the stopping power data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Mashkova, E.S. and Molchanov, V.A., Rasseyanie ionov srednikh energii poverkhnostyami tverdykh tel (Medium-Energy Ions Scattering by Solid Surfaces), Moscow: Atomizdat, 1980.

  2. Kurnaev, V.A., Mashkova, E.S., and Molchanov, V.A., Otrazhenie legkikh ionov ot poverkhnosti tverdogo tela (Light Ions Reflection from the Solid Surface), Moscow: Energoatomizdat, 1985.

  3. Mashkova, E.S. and Molchanov, V.A., Medium Energy Ion Reflection from Solids, Amsterdam: North-Holland, 1985.

    Google Scholar 

  4. Ryazanov, M.I. and Tilinin, I.S., Issledovanie poverkhnosti po obratnomu rasseyaniyu chastits (Surface Investigation by Particle Backscattering), Moscow: Energoatomizdat, 1985.

  5. Mashkova, E.S. and Molchanov, V.A., Primenenie rasseyaniya ionov dlya analiza tverdykh tel (Application of Ion Scattering for Solids Analysis), Moscow: Energoatomizdat, 1995.

  6. Chi, W.K., Mayer, J.M., and Nicolet, M.A., Backscattering Spectroscopy, New York: Academic, 1978.

    Google Scholar 

  7. Afanas’ev, V.P., Efremenko, D.S., and Kaplya, P.S., Analytical and numerical methods for computing electron partial intensities in the case of multilayer systems, J. Electron. Spectrosc. Relat. Phenom., 2016, vol. 210, pp. 16–29.

    Article  Google Scholar 

  8. Afanas’ev, V.P., Kaplya, P.S., and Lisitsyna, E.D., Small-angle approximation and Oswald-Kasper-Gaukler theory of electron reflection from solids, J. Surf. Invest.: X-ray, Synchrotr. Neutron Tech., 2016, vol. 10, no. 2, pp. 326–331.

    Article  Google Scholar 

  9. Oswald, R., Kasper, E., and Gaukler, K.H., A multiple scattering theory of elastic electron backscattering from amorphous surfaces, J. Electron. Spectrosc. Relat. Phenom., 1993, vol. 61, nos. 3–4, pp. 251–274.

    Article  Google Scholar 

  10. Salvat-Pujol, F. and Werner, W.S.M., Oswald-Kasper-Gaukler model for reflection electron energy loss spectroscopy, Phys. Rev. B, 2011, vol. 83, no. 19, p. 195416.

    Article  Google Scholar 

  11. Kalashnikov, N.P., Remizovich, V.S., and Ryazanov, M.I., Stolknoveniya bystrykh zaryazhennykh chastits v tverdykh telakh (Collisions of Fast Charged Particles in Solids), Moscow: Atomizdat, 1980.

  12. Firsov, O.B., Scattering of ions by atoms, Sov. Phys. JETP, 1958, vol. 34, p. 308.

    Google Scholar 

  13. Ziegler, J.F., Biersack, J.P., and Littmark, U., The Stopping and Range of Ions in Solids, New York: Pergamon, 1985.

    Google Scholar 

  14. Bulgadaryan, D.G., Sinel’nikov, D.N., Efimov, N.E., and Kurnaev, V.A., Using the scattering spectroscopy of keV-energy protons to analyze the deposition of lithium on tungsten, Bull. Russ. Acad. Sci.: Phys., 2020, vol. 84, no. 6, pp. 742–746.

    Article  MathSciNet  Google Scholar 

  15. Kurnaev, V.A. and Tel’kovskii, V.G., Eksperimental’nye dannye po obratnomu rasseyaniyu zaryazhennykh chastits (Experimental Data on Backscattering of Charged Particles), Moscow: MIFI, 1982.

  16. Morita, K., Akimune, H., and Suita, T., Scattering of low hydrogen ions (\({\text{H}}_{1}^{ + }\), \({\text{H}}_{2}^{ + }\) and \({\text{H}}_{3}^{ + }\)) and atoms (\({\text{H}}_{1}^{0}\)) from evaporated metallic films, Jpn. J. Appl. Phys., 1968, vol. 7, no. 8, pp. 916–926.

    Article  Google Scholar 

  17. Afanas’ev, V.P., Manukhin, V.V., and Naueks, D., Total reflection coefficients of energy and particles from layered targets, Poverkhnost’: Fiz., Khim. Mekh., 1990, no. 9, p. 151.

  18. Afanas’ev, V.P. and Naujoks, D., Energy spectra of electrons reflected from layered targets, Z. Phys. B: Condens. Matter., 1991, vol. 84, p. 397.

    Article  Google Scholar 

  19. Afanas’ev, V.P., Lubenchenko, A.V., Pavolotskii, A.B., and Fedorovich, S.D., Reflection of keV energy electrons from multilayer surfaces, Tech. Phys., 1998, vol. 43, no. 11, pp. 1444–1452.

    Google Scholar 

  20. Bulgadaryan, D., Kurnaev, V., Sinelnikov, D., and Efimov, N., On the possibility of thin layers thickness determination with low energy proton scattering, J. Phys.: Conf. Ser., 2018, vol. 941, no. 1, p. 012022.

    Google Scholar 

  21. Bulgadaryan, D., Sinelnikov, D., Kurnaev, V., Efimov, N., Borisyuk, P., and Lebedinskii, Y., Application of keV-energy proton scattering for thin film analysis, Nucl. Instrum. Methods Phys. Res., Sect. B, 2019, vol. 438, pp. 54–57.

    Google Scholar 

  22. Bulgadaryan, D., Kolodko, D., Kurnaev, V., and Sinelnikov, D., Facility and the method for MEIS analysis of layers redeposited in plasma devices, J. Phys.: Conf. Ser., 2016, vol. 748, no. 1, p. 012016.

    Google Scholar 

  23. Bronshtein, I.M. and Pronin, V.P., Elastic scattering of electrons during gold adsorption on beryllium and beryllium adsorption on gold, Sov. Phys. Solid State, 1976, vol. 17, pp. 2502–2504.

    Google Scholar 

  24. Pronin, V.P., Elastic and inelastic interaction of medium energy electrons with surface of solids, Doctoral Thesis, Moscow: Herzen State Pedagogical Univ., 2014.

  25. Tanuma, S., Powell, C.J., and Penn, D.R., Calculation of electron inelastic mean free paths (IMFPs) VII. Reliability of the TPP-2M IMFP predictive equation, Surf. Interface Anal., 2003, vol. 35, no. 3, pp. 268–275.

    Article  Google Scholar 

  26. Tanuma, S., Powell, C.J., and Penn, D.R., Calculations of electron inelastic mean free paths. IX. Data for 41 elemental solids over the 50 eV to 30 keV range, Surf. Interface Anal., 2011, vol. 43, no. 3, pp. 689–713.

    Article  Google Scholar 

  27. Salvat, F., Jablonski, A., and Powell, C.J., ELSEPA–Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules, Comput. Phys. Commun., 2005, vol. 165, no. 2, pp. 157–190.

    Article  Google Scholar 

Download references

Funding

This study was carried out as part of state assignment no. FSFW-2020-0023.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. P. Afanasiev or L. G. Lobanova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afanasiev, V.P., Lobanova, L.G. Application of the Methods Used to Interpret the Electron Spectroscopy Spectra to Interpret Ion Spectroscopy Signals. Russ Microelectron 51, 210–219 (2022). https://doi.org/10.1134/S1063739722040035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739722040035

Keywords:

Navigation