Skip to main content
Log in

Estimating the Interrelation between the Rate of Atomic Layer Deposition of Thin Platinum-Group Metal Films and the Molecular Mass of Reactant Precursors

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The published data on the atomic layer deposition of thin platinum-group metal (Ru, Rh, Pd, Os, Ir, and Pt) films with the use of different reactant precursors and second reactants (O2, O3, H2, etc.) are generalized in the context of microelectronic technologies. A procedure for analyzing the data on the atomic layer deposition kinetics is discussed. The rate of atomic layer deposition of metallic ruthenium is not higher than 0.15 nm/cycle. An inverse dependence of the limiting atomic layer deposition growth rate on the precursor molecular mass is established. The rates of atomic layer deposition of thin films of all the remaining metals in the group range between 0.03–0.07 nm/cycle, which is lower than the values for a monolayer of these metals by several times. The methodology and ways of enhancing the reliability of the kinetic data on the atomic layer deposition are discussed, including the need for taking into account the sample surface types and effects of nucleation delays at the initial growth stages of the thin platinum-group metal film. The possible occurrence of chemical deposition reactions with intermediate products involved at the pulsed injection of the reactants is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Xia, L.-Q. and Chang, M., Chemical vapor deposition, in Handbook of Semiconductor Manufacturing Technology, 2nd ed., Doering, R. and Nishi, Y., Boca Raton, FL: CRC, 2008, pp. 13-1–13-87.

  2. Vasilyev, V.Yu., Thin Film Chemical Vapor Deposition in Integrated Circuit Technology: Equipment, Methodology and Thin Film Growth Experience, New York: Nova Science, 2014.

    Google Scholar 

  3. Ritala, M. and Leskelä, M., in Handbook of Thin Film Materials, Nalwa, H.S., Ed., San Diego: Academic, 2001, vol. 1, pp. 103–159.

    Google Scholar 

  4. George, S.M., Atomic layer deposition: an overview, Chem. Rev., 2010, vol. 110, no. 1, pp. 111–131.

    Article  Google Scholar 

  5. Hamalainen, J., Ritala, M., and Leskelä, M., Atomic layer deposition of noble metals and their oxides, Chem. Mater., 2014, vol. 26, no. 1, pp. 786–801.

    Article  Google Scholar 

  6. Vasil’ev, V.Yu., Ultra-thin metal films of the platinum group for application in nano- and micro-technologies, Nano-Mikrosist. Tekh., 2016, vol. 18, no. 7, pp. 454–464.

    Google Scholar 

  7. Vasilyev, V.Yu., Morozova, N.B., and Igumenov, I.K., Chemical vapour-phase deposition of ruthenium-containing thin films, Russ. Chem. Rev., 2014, vol. 83, no. 8, pp. 758–782.

    Article  Google Scholar 

  8. Vasilyev, V.Yu., Morozova, N.B., Basova, N.D., Igumenov, I.K., and Hassan, A., Chemical vapour deposition of IR-based coatings: chemistry, processes and applications, RCS Adv., 2015, vol. 5, pp. 32034–32063.

    Google Scholar 

  9. Puurunen, R.L., Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process, J. Appl. Phys., 2005, vol. 97, p. 121 301.

    Article  Google Scholar 

  10. Elam, J.W., Zinovev, A., Han, C.Y., Wang, H.H., Welp, U., Hryn, J.N., and Pellin, M.J., Atomic layer deposition of palladium films om Al2O3 surfaces, Thin Solid Films, 2006, vol. 515, nos. 1–2, pp. 1664–1673.

    Article  Google Scholar 

  11. Kim, J.-Y., Kil, D.-S., Kim, J.-H., Kwon, S.-H., Ahn, J.-H., Roh, J.-S., and Park, S.-K., Ru films from bis(ethylcyclopentadienyl)ruthenium using ozone as a reactant by atomic layer deposition for capacitor electrodes, J. Electrochem. Soc., 2012, vol. 159, no. 6, pp. H560–H564.

    Article  Google Scholar 

  12. Kukli, K., Aarik, J., Aidla, A., Uustare, T., Jogi, I., Lu, J., Tallarid, M., Kemell, M., Kiisler, A.-A., Ritala, M., and Leskelä, M., Structure and morphology of ru films grown by atomic layer deposition from 1-ethyl-1'-methyl-ruthenocene, J. Cryst. Growth, 2010, vol. 312, nos. 12–13, pp. 2025–2032.

    Article  Google Scholar 

  13. Kukli, K., Ritala, M., Kemell, M., and Leskela, M., High temperature atomic layer deposition of ruthenium from N,N-dimethyl-1-ruthenocenylethylamine, J. Electrochem. Soc., 2010, vol. 157, no. 1, pp. D35–D40.

    Article  Google Scholar 

  14. Methaapanon, R., Geyer, S.M., Lee, H.-B.-R., and Bent, S.F., The low temperature atomic layer deposition of ruthenium and the effect of oxygen exposure, J. Mater. Chem., 2012, vol. 22, pp. 25154–25160.

    Article  Google Scholar 

  15. Wang, H., Gordon, R.G., Alvis, R., and Ulfig, R.M., Atomic layer deposition of ruthenium thin films from an amidinate precursor, Chem. Vap. Deposit., 2009, vol. 15, nos. 10–12, pp. 312–319.

    Article  Google Scholar 

  16. Li, H., Farmer, D.B., Gordon, R.G., Lin, Y., and Vlassak, J., Vapor deposition of ruthenium from an amidinate precursor, J. Electrochem. Soc., 2007, vol. 154, no. 12, pp. D642–D647.

    Article  Google Scholar 

  17. Min, Y.-S., Bae, E.J., Jeong, K.S., Cho, Y.J., Lee, J.-H., Choi, W.B., and Park, G.-S., Ruthenium oxide nanotube arrays fabricated by atomic layer deposition using a carbon nanotube template, Adv. Mater., 2003, vol. 15, no. 12, pp. 1019–1022.

    Article  Google Scholar 

  18. Aaltonen, T., Ritala, M., Arstila, K., Keinonen, J., and Leskela, M., Atomic layer deposition of ruthenium thin films from Ru(thd)3 and oxygen, Chem. Vap. Deposit., 2004, vol. 10, no. 4, pp. 215–219.

    Article  Google Scholar 

  19. Aaltonen, T., Ritala, M., Tung, Y.-L., Chi, Y., Arstila, K., Meinander, K., and Leskela, M., Atomic layer deposition of noble metals: exploration of the low limit of the deposition temperature, J. Mater. Res., 2004, vol. 19, no. 11, pp. 3353–3358.

    Article  Google Scholar 

  20. Park, S.K., Kanjolia, R., Anthis, J., Odedra, R., Boag, N., Wielunski, L., and Chabal, Y., Atomic layer deposition of Ru/RuO2 thin films studied by in-situ infrared spectroscopy, J. Chem. Mater., 2010, vol. 22, no. 17, pp. 4867–4878.

    Article  Google Scholar 

  21. Schaekers, M., Capon, B., Detavernier, C., and Blasco, N., The deposition of Ru and RuO2 films for dram electrode, ECS Trans., 2010, vol. 33, no. 2, pp. 135–144.

    Article  Google Scholar 

  22. Gregorczyk, K., Henn-Lecordier, L., Gatineau, J., Dussarrat, C., and Rubloff, G., Atomic layer deposition of ruthenium using the novel precursor bis(2,6,6-trimethyl-cyclohexadienyl)ruthenium, Chem. Mater., 2011, vol. 23, no. 10, pp. 2650–2656.

    Article  Google Scholar 

  23. Kim, S.-H., Low temperature atomic layer deposition of Ru thin films with enhanced nucleation using various Ru(0) metallorganic precursors and molecular O2, ECS Trans., 2011, vol. 41, no. 2, pp. 19–23.

    Article  Google Scholar 

  24. Kukli, K., Kemell, M., Puukilainen, E., Aarik, J., Aidla, A., Sajavaara, T., Laitinen, M., Tallarida, M., Sundqvist, J., Ritala, M., and Leskela, M., Atomic layer deposition of ruthenium films from (ethylcyclopentadienyl)(pyrrolyl)ruthenium and oxygen, J. Electrochem. Soc., 2011, vol. 158, no. 3, pp. D158–D165.

    Article  Google Scholar 

  25. Kukli, K., Aarik, J., Aidla, A., Jogi, I., Arroval, T., Lu, J., Sajavaara, T., Laitinen, M., Kiisler, A.-A., Ritala, M., Leskelä, M., Peck, J., Natwora, J., Geary, J., Spohn, R., Meiere, S., and Thompson, D.M., Atomic layer deposition of Ru films from bis(2,5-dimethylpyrrolyl)ruthenium and oxygen, Thin Solid Films, 2012, vol. 520, no. 7, pp. 2756–2763.

    Article  Google Scholar 

  26. Vasilyev, V.Yu., Mogilnikov, K.P., and Song, Y.W., Surface selective growth of ruthenium films under low temperature CVD conditions, Electrochem. Solid State Lett., 2008, vol. 11, no. 12, pp. D89–D93.

    Article  Google Scholar 

  27. Lee, S.-J., Kim, S.-H., Saito, M., Suzuki, K., Nabeya, S., Lee, J., Kim, S., Yeom, S., and Lee, D.-J., Plasma-free atomic layer deposition of Ru thin films using H2 molecules as a nonoxidizing reactant, J. Vac. Sci. Technol., A, 2016, vol. 34, no. 3, p. 031 509.

    Article  Google Scholar 

  28. Yung, J.-H., Lee, S.-J., Lee, H.-J., Lee, M.-Y., Cheon, T., Bae, S.I., Saito, M., Suzuki, K., Nabeya, S., Lee, J., Kim, S., Yeom, S., Seo, J.H., and Kim, S.-H., Atomic layer deposition of Ru thin films using a new beta-diketonate Ru precursor and NH3 plasma as a reactant, J. Nanosci. Nanotechnol., 2015, vol. 15, no. 11, pp. 8472–8477.

    Article  Google Scholar 

  29. Park, K.J. and Parsons, G.N., Selective area atomic layer deposition of rhodium and effective work function characterization in capacitor structures, Appl. Phys. Lett., 2006, vol. 89, no. 4, p. 043 111.

    Article  Google Scholar 

  30. Hämäläinen, J., Puukilainen, E., Sajavaara, T., Ritala, M., and Leskelä, M., Low temperature atomic layer deposition of noble metals using ozone and molecular hydrogen as reactants, Thin Solid Films, 2013, vol. 531, pp. 243–250.

    Article  Google Scholar 

  31. Senkevich, J.J., Tang, F., Rogers, D., Drotar, J.T., Jezewski, C., Lanford, W.A., Wang, G.-C., and Lu, T.-M., Sustrate-independent palladium atomic layer deposition, Chem. Vap. Deposit., 2003, vol. 9, no. 5, pp. 258–264.

    Article  Google Scholar 

  32. Ten Eyck, G.A., Pimanpang, S., Bakhru, H., Lu, T.-M., and Wang, G.-C., Atomic layer deposition of Pd on an oxidized metal substrate, Chem. Vap. Deposit., 2006, vol. 12, pp. 290–294.

    Article  Google Scholar 

  33. Weber, M.J., Mackus, A.J.M., Verheijen, M.A., van der Marel, C., and Kessels, W.M.M., Supported core/ shell bimetallic nanoparticles synthesis by atomic layer deposition, Chem. Mater., 2012, vol. 24, pp. 2973–2977.

    Article  Google Scholar 

  34. Weber, M.J., Mackus, A.J.M., Verheijen, M.A., Longo, V., Bol, A.A., and Kessels, W.M.M., Atomic layer deposition of high-purity palladium films from Pd(hfac)2 and H2 and O2 plasmas, J. Phys. Chem. C, 2014, vol. 118, pp. 8702–8711.

    Article  Google Scholar 

  35. Feng, H., Elam, J.W., Libera, J.A., Setthapun, W., and Stair, P.C., Palladium catalysts synthesized by atomic layer deposition for methanol decomposition, Chem. Mater., 2010, vol. 22, pp. 3133–3142.

    Article  Google Scholar 

  36. Aaltonen, T., Ritala, M., Tung, Y.-L., Chi, Y., Arstila, K., Meinander, K., and Leskela, M., Atomic layer deposition of noble metals: exploration of the low limit of the deposition temperature, J. Mater. Res., 2004, vol. 19, no. 11, pp. 3353–3358.

    Article  Google Scholar 

  37. Hämäläinen, J., Sajavaara, T., Puukilainen, E., Ritala, M., and Leskelä, M., Atomic layer deposition of osmium, Chem. Mater., 2012, vol. 24, pp. 55–60.

    Article  Google Scholar 

  38. Hämäläinen, J., Puukilainen, E., Kemell, M., Costelle, L., Ritala, M., and Leskelä, M., Atomic layer deposition of iridium thin films by consecutive oxidation and reduction steps, Chem. Mater., 2009, vol. 21, pp. 4868–4872.

    Article  Google Scholar 

  39. Choi, B.H., Lee, J.H., Lee, H.K., and Kim, J.H., Effect of interface layer on growth behavior of atomic-layer-deposited Ir thin film as novel Cu diffusion barrier, Appl. Surf. Sci., 2011, vol. 257, no. 22, pp. 9654–9660.

    Article  Google Scholar 

  40. Lim, Y.H., Yoo, H., Choi, B.H., Lee, J.H., Lee, H.-N., and Lee, H.K., Atomic-layer-deposited Ir thin film as a novel diffusion barrier layer in Cu interconnection, Phys. Status Solidi C, 2011, vol. 8, no. 3, pp. 891–894.

    Article  Google Scholar 

  41. Hämäläinen, J., Hatanpää, T., Puukilainen, E., Costelle, L., Pilvi, T., Ritala, M., and Leskelä, M., (MeCp)Ir(CHD) and molecular oxygen as precursors in atomic layer deposition of iridium, J. Mater. Chem., 2010, vol. 20, no. 36, pp. 7669–7675.

    Article  Google Scholar 

  42. Hämäläinen, J., Hatanpaaa, T., Puukilainen, E., Sajavaara, T., Ritala, M., and Leskelä, M., Iridium metal and iridium oxide thin films grown by atomic layer deposition at low temperatures, J. Mater. Chem., 2011, vol. 21, no. 41, pp. 16488–16483.

    Article  Google Scholar 

  43. Hämäläinen, J., Munnik, F., Ritala, M., and Leskelä, M., Atomic layer deposition of platinum oxide and metallic platinum thin films from Pt(acac)2 and ozone, Chem. Mater., 2008, vol. 20, no. 21, pp. 6840–6846.

    Article  Google Scholar 

  44. Mackus, A.J.M., Leick, N., Baker, L., and Kes-sels, W.M.M., Catalytic combustion and dehydrogenation reactions during atomic layer deposition of platinum, Chem. Mater., 2012, vol. 24, no. 10, pp. 1752–1761.

    Article  Google Scholar 

  45. Vasilyev, V.Yu., Ruthenium thin film growth kinetics under thermally-activated pulsed chemical vapor deposition conditions, in Advances in Chemistry Research, Taylor, J.C., Ed., New York: Nova Science, 2017, vol. 39, pp. 109–140.

    Google Scholar 

  46. Vasilyev, V.Yu., Low-temperature thermally-activated pulsed chemical vapor deposition of ruthenium thin films using carbonyl-diene precursor, in Ruthenium: Properties, Production and Applications, Watson, D.B., Ed., New York: Nova Science, 2011, pp. 2–85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Vasilyev.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilyev, V.Y. Estimating the Interrelation between the Rate of Atomic Layer Deposition of Thin Platinum-Group Metal Films and the Molecular Mass of Reactant Precursors. Russ Microelectron 48, 208–219 (2019). https://doi.org/10.1134/S1063739719040103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739719040103

Keywords:

Navigation