Skip to main content
Log in

Statistical Models and Adequacy Validation for Optical Quantum State Tomography with Quadrature Measurements

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

Mutually complementary quadrature quantum measurements are analyzed and a new method to formulate statistical models of quantum states is proposed. The method is based on the root approach to quantum measurements and includes a procedure for approximating quantum states with reduced finite dimensional models. The efficiency of the proposed approach is demonstrated using numerical experiments. This approach is aimed at achieving the highest possible precision in multiphoton quantum state tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Valiev, K.A. and Kokin, A.A., Kvantovye komp’yutery: nadezhda i real’nost’ (Quantum Computers: Hope and Reality), Izhevsk: RKhD, 2001.

    Google Scholar 

  2. Valiev, K.A., Quantum computers and quantum computation, Phys. Usp., 2014, vol. 57, no. 9, pp. 1–36.

    Google Scholar 

  3. Nielsen, M.A. and Chuang, I.L., Quantum Computation and Quantum Information, Cambridge: Cambridge Univ. Press, 2000.

    MATH  Google Scholar 

  4. Chen, G., Church, D.A., Englert, B.-G., et al., Quantum Computing Devices. Principles, Designs, and Analysis, Boca Raton, FL: Chapman Hall, CRC, 2007.

    MATH  Google Scholar 

  5. Bogdanov, Yu.I., Valiev, K.A., and Kokin, A.A., Quantum computers: achievements, implementation difficulties, and prospects, Russ. Microelectron., 2011, vol. 40, no. 4, pp. 225–236.

    Article  Google Scholar 

  6. Bogdanov, Yu.I., Kokin, A.A., Lukichev, V.F., Orlikovskii, A.A., Semenikhin, I.A., and Chernyavskii, A.Yu., Quantum mechanics and development of information technologies, Inform. Tekhnol. Vychisl. Sist., 2012, no. 1, pp. 17–31.

    Google Scholar 

  7. Quantum Communications and Cryptography, Sergienko, A.V., Ed., London, New York: Taylor Francis Group, 2005.

  8. Kholevo, A.S., Kvantovye sistemy, kanaly, informatsiya (Quantum Systems, Channels, Information), Moscow: MTsNMO, 2010.

    Google Scholar 

  9. Bengtsson, I. and Zyczkowski, K., Geometry of Quantum States: An Introduction to Quantum Entanglement, Cambridge: Cambridge Univ. Press, 2006.

    Book  MATH  Google Scholar 

  10. Bogdanov, A.Yu., Bogdanov, Yu.I., and Valiev, K.A., Schmidt information and entanglement of quantum systems, Moscow Univ. Comput. Math. Cybernet., 2014, vol. 31, no. 1, p. 33; arXiv: 0512062 [quant-ph].

    Article  MathSciNet  MATH  Google Scholar 

  11. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., and Zeilinger, A., Experimental quantum teleportation, Nature, 1997, vol. 390, no. 6660, pp. 575–579.

    Article  MATH  Google Scholar 

  12. James, D.F., Kwiat, P.G., Munro, W.J., and White, A.G., Measurement of qubits, Phys. Rev. A, 2001, vol. 64, p. 052312.

    Article  Google Scholar 

  13. Banaszek, K., D’Ariano, G.M., Paris, M.G.A., and Sacchi, M.F., Maximum-likelihood estimation of the density matrix, Phys. Rev. A, 2000, vol. 61, p. 010304.

    Article  Google Scholar 

  14. D’Ariano, G.M., Paris, M.G.A., and Sacchi, M.F., Parameters estimation in quantum optics, Phys. Rev. A, 2000, vol. 62, p. 023815.

    Article  Google Scholar 

  15. Allevi, A., Andreoni, A., Bondani, M., Brida, G., Genovese, M., Gramegna, M., Traina, P., Olivares, S., Paris, M.G.A., and Zambra, G., State reconstruction by on/off measurements, Phys. Rev. A, 2009, vol. 80, p. 022114.

    Article  Google Scholar 

  16. Bogdanov, Yu.I., Chekhova, M.V., Krivitsky, L.A., Kulik, S.P., Penin, A.N., Kwek, L.C., Zhukov, A.A., Oh, C.H., and Tey, M.K., Statistical reconstruction of qutrits, Phys. Rev. A, 2004, vol. 70, p. 042303.

    Article  Google Scholar 

  17. Bogdanov, Yu.I., Krivitskii, L.A., and Kulik, S.P., Statistical reconstruction of the quantum states of three level optical systems, JETP Lett., 2003, vol. 78, pp. 352–357.

    Article  Google Scholar 

  18. Bogdanov, Yu.I., Chekhova, M.V., Kulik, S.P., Maslennikov, G.A., Zhukov, A.A., Oh, C.H., and Tey, M.K., Qutrit state engineering with biphotons, Phys. Rev. Lett., 2004, vol. 93, p. 230503.

    Article  Google Scholar 

  19. Bogdanov, Yu.I., Moreva, E.V., Maslennikov, G.A., Galeev, R.F., Straupe, S.S., and Kulik, S.P., Polarization states of four-dimensional systems based on biphotons, Phys. Rev. A, 2006, vol. 73, p. 063810.

    Article  Google Scholar 

  20. Bogdanov, Yu.I., Kulik, S.P., Moreva, E.V., Tikhonov, I.V., and Gavrichenko, A.K., Optimization of a quantum tomography protocol for polarization qubits, JETP Lett., 2010, vol. 91, pp. 686–692.

    Article  MATH  Google Scholar 

  21. D’Ariano, G.M., Mataloni, P., and Sacchi, M.F., Generating qudits with d = 3, 4 encoded on two-photon states, Phys. Rev. A, 2005, vol. 71, p. 062337.

    Article  Google Scholar 

  22. Rehacek, J., Englert, B.-G., and Kaszlikowski, D., Minimal qubit tomography, Phys. Rev. A, 2004, vol. 70, p. 052321.

    Article  Google Scholar 

  23. Ling, A., Soh, K.P., Lamas-Linares, A., and Kurtsiefer, C., Experimental polarization state tomography using optimal polarimeters, Phys. Rev. A, 2006, vol. 74, p. 022309.

    Article  Google Scholar 

  24. de Burgh, M.D., Langford, N.K., Doherty, A.C., and Gilchrist, A., Choice of measurement sets in qubit tomography, Phys. Rev. A, 2008, vol. 78, p. 052122.

    Article  Google Scholar 

  25. Asorey, M., Facchi, P., Man’ko, V.I., Marmo, G., Pascazio, S., and Sudarshan, E.C.G., Generalized tomographic maps, Phys. Rev. A, 2008, vol. 77, p. 042115.

    Article  MathSciNet  MATH  Google Scholar 

  26. Mikami, H. and Kobayashi, T., Remote preparation of qutrit states with biphotons, Phys. Rev. A, 2007, vol. 75, p. 022325.

    Article  Google Scholar 

  27. Lanyon, B.P., Weinhold, T.J., Langford, N.K., O’Brien, J.L., Resch, K.J., Gilchrist, A., and White, A.G., Manipulating biphotonic qutrits, Phys. Rev. Lett., 2008, vol. 100, p. 060504.

    Article  Google Scholar 

  28. Molina-Terriza, G., Torres, J.P., and Torner, L., Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum, Phys. Rev. Lett., 2001, vol. 88, no. 1, p. 013601.

    Article  Google Scholar 

  29. Peeters, W.H., Verstegen, E.J.K., and van Exter, M.P., Orbital angular momentum analysis of high-dimensional entanglement, Phys. Rev. A, 2007, vol. 76, no. 4, p. 042302.

    Article  Google Scholar 

  30. Di Lorenzo Pires, H., Florijn, H.C.B., and van Exter, M.P., Measurement of the spiral spectrum of entangled twophoton states, Phys. Rev. Lett., 2010, vol. 104, no. 2, p. 020505.

    Article  Google Scholar 

  31. Bobrov, I.B., Kovlakov, E.V., Markov, A.A., Straupe, S.S., and Kulik, S.P., Tomography of spatial mode detectors, Opt. Express, 2015, vol. 23, no. 2, pp. 649–654.

    Article  Google Scholar 

  32. Belinsky, A.V. and Klyshko, D.N., Two-photon wavepackets, Laser Phys., 1994, vol. 4, no. 4, pp. 663–689.

    Google Scholar 

  33. Chekhova, M.V., Ivanova, O.A., Berardi, V., and Garuccio, A., Spectral properties of three-photon entangled states generated via three-photon parametric down-conversion in a medium, Phys. Rev. A, 2005, vol. 72, no. 2, p. 023818.

    Article  Google Scholar 

  34. D’Angelo, M., Zavatta, A., Parigi, V., and Bellini, M., Tomographic test of Bell’s inequality for a time-delocalized single photon, Phys. Rev. A, 2006, vol. 74, no. 5, p. 052114.

    Article  Google Scholar 

  35. Bogdanov, Yu.I. and Kulik, S.P., The efficiency of quantum tomography based on photon detection, Laser Phys. Lett., 2013, vol. 10, no. 12, p. 125202.

    Article  Google Scholar 

  36. Bogdanov, Yu.I., Avosopyants, G.V., Belinskii, L.V., Katamadze, K.G., Kulik, S.P., and Lukichev, V.F., Statistical reconstruction of optical quantum states based on mutually complementary quadrature quantum measurements, J. Exp. Theor. Phys., 2016, vol. 123, no. 2, pp. 212–218.

    Article  Google Scholar 

  37. Bohr, N., Discussion with Einstein on epistemological problems in atomic physics, in Albert Einstein, Philosopher-Scientist, Schilp, P.A., Ed., Evanston, IL: Library of Living Philosophers, 1949, pp. 200–241.

    Google Scholar 

  38. Pauli, W., General Principles of Quantum Mechanics, Berlin, Heidelberg, New York: Springer, 1980.

    Book  Google Scholar 

  39. Yuen, H.P. and Chan, V.W.S., Noise in homodyne and heterodyne detection, Opt. Lett., 1983, vol. 8, no. 3, pp. 177–179.

    Article  Google Scholar 

  40. Schumaker, B.L., Noise in homodyne detection, Opt. Lett., 1984, vol. 9, no. 5, pp. 189–191.

    Article  Google Scholar 

  41. Vogel, K. and Risken, H., Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase, Phys. Rev. A, 1989, vol. 40, no. 5, pp. 2847–2849.

    Article  Google Scholar 

  42. Schleich, W.P., Quantum Optics in Phase Space, Berlin: Wiley-VCH, 2001.

    Book  MATH  Google Scholar 

  43. D’Ariano, G.M., Paris, M.G.A., and Sacchi, M.F., Quantum tomography, Adv. Imaging Electron Phys., 2003, vol. 128, pp. 205–308, quant-ph/0302028.

    Article  Google Scholar 

  44. Lvovsky, A.I., Hansen, H., Aichele, T., Benson, O., Mlynek, J., and Schiller, S., Quantum state reconstruction of the single-photon Fock state, Phys. Rev. Lett., 2001, vol. 87, p. 050402.

    Article  Google Scholar 

  45. Zavatta, A., Viciani, S., and Bellini, M., Tomographic reconstruction of the single-photon Fock state by highfrequency homodyne detection, Phys. Rev. A, 2004, vol. 70, p. 053821.

    Article  Google Scholar 

  46. Lvovsky, A.I. and Raymer, M.G., Continuous-variable optical quantum-state tomography, Rev. Mod. Phys., 2009, vol. 81, pp. 299–332.

    Article  Google Scholar 

  47. Ibort, A., Man’ko, V.I., Marmo, G., Simoni, A., and Ventriglia, F., An introduction to the tomographic picture of quantum mechanics, Phys. Scr., 2009, vol. 79, p. 065013.

    Article  MATH  Google Scholar 

  48. Quantum State Estimation, Paris, M. and Rehácek J., Eds., Vol. 649 of Lect. Notes Phys., Berlin, Heidelberg: Springer, 2004.

  49. Focus on Quantum Tomography, Banaszek, K., Cramer, M., and Gross, D., Eds., New J. Phys., 2012–2013, vol. 15. http://iopscience.iop.org/1367-2630/page/Focus%20 on%20Quantum%20Tomography.

  50. Bogdanov, Yu.I., Bogdanova, N.A., Katamadze, K.G., Avosopyants, G.V., and Lukichev, V.F., Study of photon statistics using a compound Poisson distribution and quadrature measurements, Optoelectron., Instrum. Data Process., 2016, vol. 52, no. 5, pp. 475–485.

    Article  Google Scholar 

  51. Bogdanov, Yu.I., Unified statistical method for reconstructing quantum states by purification, J. Exp. Theor. Phys., 2009, vol. 108, no. 6, pp. 928–935.

    Article  Google Scholar 

  52. Bogdanov, Yu.I., Brida, G., Genovese, M., Kulik, S.P., Moreva, E.V., and Shurupov, A.P., Statistical estimation of the efficiency of quantum state tomography protocols, Phys. Rev. Lett., 2010, vol. 105, p. 010404.

    Article  Google Scholar 

  53. Bogdanov, Yu.I., Brida, G., Bukeev, I.D., Genovese, M., Kravtsov, K.S., Kulik, S.P., Moreva, E.V., Soloviev, A.A., and Shurupov, A.P., Statistical estimation of quantum tomography protocols quality, Phys. Rev. A, 2011, vol. 84, p. 042108.

    Article  Google Scholar 

  54. Condon, E.U., Immersion of the fourier transform in a continuous group of functional transformations, Proc. Nat. Acad. Sci. USA, 1937, vol. 23, pp. 158–164.

    Article  MATH  Google Scholar 

  55. Chountasis, S., Vourdas, A., and Bendjaballah, C., Fractional Fourier operators and generalized Wigner functions, Phys. Rev. A, 1999, vol. 60, no. 5, pp. 3467–3473.

    Article  MathSciNet  Google Scholar 

  56. Borovkov, A.A., Matematicheskaya statistika (Mathematical Statistics), Moscow: Nauka, 1984; New York: Gordon and Breach, 1998.

    MATH  Google Scholar 

  57. Cramer, H., Mathematical Methods of Statistics, Princeton: Princeton Univ. Press, 1946.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Bogdanov.

Additional information

Original Russian Text © Yu.I. Bogdanov, N.A. Bogdanova, L.V. Belinsky, V.F. Lukichev, 2017, published in Mikroelektronika, 2017, Vol. 46, No. 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdanov, Y.I., Bogdanova, N.A., Belinsky, L.V. et al. Statistical Models and Adequacy Validation for Optical Quantum State Tomography with Quadrature Measurements. Russ Microelectron 46, 371–378 (2017). https://doi.org/10.1134/S1063739717060038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739717060038

Navigation