Skip to main content
Log in

Experimental diamond photonics: Current state and prospects. Part II

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The technique for fabricating microcavities from diamond and other materials is described and their main parameters are reported. The possibilities of using color centers in diamond which interact with optical cavities as single-phonon sources and in quantum information processing are discussed. Several variants of integration of the color centers with high-Q cavities are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen, M.A. and Chuang, I.L., Quantum Computation and Quantum Information, Cambridge: Cambridge Univ. Press, 2000.

    MATH  Google Scholar 

  2. Valiev, K.A. and Kokin, A.A., Kvantovye komp’yutery: nadezhdy i real’nost’ (Quantum Computers Expectations and Reality), 2nd ed., Moscow, Izhevsk: NITs RKhD, 2002.

    Google Scholar 

  3. Tsukanov, A.V. and Kateev, I.Yu., Experimental diamond photonics: modern state and development perspectives, Part I, Mikroelektronika, 2016, vol. 44, no. 5 (in press).

    Google Scholar 

  4. Lee, J.C., Bracher, D.O., Cui, S., Ohno, K., McLellan, C.A., Zhang, X., Andrich, P., Aleman, B., Russell, K.J., Magyar, A.P., Aharonovich, I., Bleszynski Jayich, A., Awschalom, D., and Hu, E.L., Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity, Appl. Phys. Lett., 2014, vol. 105, no. 26, p. 261101.

    Article  Google Scholar 

  5. Kononenko, T.V., Dyachenko, P.N., and Konov, V.I., Diamond photonic crystals for the IR spectral range, Opt. Lett., 2014, vol. 39, no. 24, p. 6962.

    Article  Google Scholar 

  6. Li, L., Schroder, T., Chen, E.H., Walsh, M., Bayn, I., Goldstein, J., Gaathon, O., Trusheim, M.E., Lu, M., Mower, J., Cotlet, M., Markham, M.L., Twitchen, D.J., and Englund, D., Coherent spin control of a nanocavity-enhanced qubit in diamond, Nat. Commun., 2015, vol. 6, pp. 6173.

    Article  Google Scholar 

  7. Hausmann, B.J.M., Shields, B.J., Quan, Q., Chu, Y., de Leon, N.P., Evans, R., Burek, M.J., Zibrov, A.S., Markham, M., Twitchen, D.J., Park, H., Lukin, M.D., and Loncr, M., Coupling of NV centers to photonic crystal nanobeams in diamond, Nano Lett., 2013, vol. 13, no. 10, p. 5791.

    Article  Google Scholar 

  8. Faraon, A., Santori, C., Huang, Z., Acosta, V.M., and Beausoleil, R.G., Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond, Phys. Rev. Lett., 2012, vol. 109, no. 3, p. 033604.

    Article  Google Scholar 

  9. Riedrich-Möller, J., Pezzagna, S., Meijer, J., Pauly, C., Mücklich, F., Markham, M., Edmonds, A.M., and Becher, C., Nanoimplantation and Purcell enhancement of single NV-centers in photonic crystal cavities in diamond, Appl. Phys. Lett., 2015, vol. 106, no. 22, p. 221103.

    Article  Google Scholar 

  10. Riedrich-Möller, J., Arend, C., Pauly, C., Mücklich, F., Fisher, M., Gsell, S., Schreck, M., and Becher, C., Deterministic coupling of a single silicon-vacancy center to a photonic crystal cavity in diamond, Nano Lett., 2014, vol. 14, no. 8, p. 5271.

    Google Scholar 

  11. Kanaliloo, B., Mitchell, M., Hryciw, A.C., and Barclay, P.E., High Q/V monolithic diamond microdisks fabricated with quasiisotropic etching, Nano Lett., 2015, vol. 15, no. 7, p. 5131.

    Article  Google Scholar 

  12. Mitchell, M., Khanaliloo, B., Lake, D.P., and Barclay, P.E., Low-dissipation cavity optomechanics in single-crystal diamond, arxiv:1511.04456v1.

  13. Lee, J.C., Aharonovich, I., Magyar, A.P., Rol, F., and Hu, E.L., Coupling of silicon-vacancy centers to a single crystal diamond cavity, Opt. Express, 2012, vol. 20, no. 8, p. 8891.

    Article  Google Scholar 

  14. Hausmann, B.J.M., Shields, B., Quan, Q., Maletinsky, P., McCutcheon, M., Choy, J.T., Babinec, T.M., Kubanek, A., Yacoby, A., Lukin, M.D., and Loncar, M., Integrated diamond networks for quantum nanophotonics, Nano Lett., 2012, vol. 12, no. 2, p. 1578.

    Article  Google Scholar 

  15. Hausmann, B.J.M., Bulu, I.B., Deotare, P.B., McCutcheon, M., Venkataraman, V., Markham, M.L., Twitchen, D.J., and Loncar, M., Integrated high-quality factor optical resonator in diamond, Nano Lett., 2013, vol. 13, no. 2, p. 1898.

    Article  Google Scholar 

  16. Bayn, I., Mouradian, S., Li, L., Goldstein, J.A., Schröder, T., Zheng, J., Chen, E.H., Gaathon, O., Lu, M., Stein, A., Ruggiero, C.A., Salzman, J., Kalish, R., and Englund, D., Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks, Appl. Phys. Lett., 2014, vol. 105, no. 21, p. 211101.

    Article  Google Scholar 

  17. Burek, M.J., Chu, Y., Liddy, M.S.Z., Patel, P., Rochman, J., Meesala, S., Hong, W., Quan, Q., Lukin, M.D., and Loncar, M., High quality-factor optical nanocavities in bulk single-crystal diamond, Nat. Commun., 2014, vol. 5, pp. 5718.

    Article  Google Scholar 

  18. Thomas, N., Barbour, R.J., Song, Y., Lee, M.L., and Fu, K.-M.C., Waveguide-integrated single-crystalline GaP resonators on diamond, Opt. Express, 2014, vol. 22, no. 11, p. 13555.

    Article  Google Scholar 

  19. Gould, M., Chakravarthi, S., Christen, I.R., Thomas, N., Dadgostar, S., Song, Y., Lee, M.L., Hatami, F., and Fu, K.-M.C., A large-scale GaP-on-diamond integrated photonics platform for NV center-based quantum information, J. Opt. Soc. B, 2016, vol. 33, no. 3, p. B35.

    Article  Google Scholar 

  20. Rath, P., Gruhler, N., Khasminskaya, S., Nebel, C., Wild, C., and Pernice, W.H.P., Waferscale nanophotonic circuits made from diamond-on-insulator substrates, Opt. Express, 2013, vol. 21, no. 9, p. 11031.

    Article  Google Scholar 

  21. Mouradian, S.L., Shröder, T., Poitras, C.B., Li, L., Goldstein, J., Chen, E.H., Walsh, M., Cardenas, J., Markham, M.L., Twitchen, D.J., Lipson, M., and Englund, D., Scalable integration of long-lived quantum memories into a photonic circuit, Phys. Rev. X, 2015, vol. 5, no. 3, p. 031009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tsukanov.

Additional information

Original Russian Text © A.V. Tsukanov, I.Yu. Kateev, 2016, published in Mikroelektronika, 2016, Vol. 45, No. 6, pp. 403–420.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsukanov, A.V., Kateev, I.Y. Experimental diamond photonics: Current state and prospects. Part II. Russ Microelectron 45, 367–382 (2016). https://doi.org/10.1134/S1063739716060081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739716060081

Navigation