Skip to main content
Log in

Nanoelectromechanical diamond structures in quantum informatics. Part I

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

Techniques for fabricating nanomechanical diamond systems and their use in modern micro- and nanoelectronics are reviewed. The primary focus is the experimental techniques for controlling the quantum state of nitrogen-vacancy centers in diamond by mechanical actions. Optimization of the working characteristics of diamond resonators is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsukanov, A.V., Nanoelectromechanical systems and quantum information processing, Russ. Microelectron., 2011, vol. 40, no. 4, p. 254.

    Article  Google Scholar 

  2. Poot, M. and van der Zant, H.S.J., Mechanical systems in the quantum regime, Phys. Rep., 2012, vol. 511, p. 273.

    Article  Google Scholar 

  3. Tsukanov, A.V., NV-centers in diamond. Part I. General information, fabrication technology, and the structure of the spectrum, Russ. Microelectron., 2012, vol. 41, no. 2, p. 91.

    Article  Google Scholar 

  4. Tsukanov, A.V., NV-centers in diamond. Part II. Spectroscopy, spin-state identification, and quantum manipulation, Russ. Microelectron., 2012, vol. 41, no. 3, p. 145.

    Article  Google Scholar 

  5. Tsukanov, A.V., NV-centers in diamond. Part III: Quantum algorithms, scaling, and hybrid systems, Russ. Microelectron., 2013, vol. 42, no. 1, p. 1.

    Article  Google Scholar 

  6. Balmer, R.S., Brandon, J.R., Clewes, S.L., Dhillon, H.K., Dodson, J.M., Friel, I., Inglis, P.N., Madgwick, T.D., Markham, M.L., Mollart, T.P., Perkins, N., Scarsbrook, G.A., Twitchen, D.J., Whitehead, A.J., Wilman, J.J., and Woollard, S.M., Chemical vapour deposition synthetic diamond: materials, technology and applications, J. Phys.: Condens. Matter, 2009, vol. 21, p. 364221.

    Google Scholar 

  7. Sekaric, L., Parpia, J.M., Craighead, H.G., Feygelson, T., Houston, B.H., and Butler, J.E., Nanomechanical resonant structures in nanocrystalline diamond, Appl. Phys. Lett., 2002, vol. 81, no. 23, p. 4455.

    Article  Google Scholar 

  8. Hutchinson, A.B., Truitt, P.A., Schwab, K.C., Sekaric, L., Parpia, J.M., Craighead, G.H., and Butler, J.E., Dissipation in nanocrystalline-diamond nanomechanical resonators, Appl. Phys. Lett., 2004, vol. 84, no. 6, p. 972.

    Article  Google Scholar 

  9. Najar, H., Chan, M.-L., Yang, H.-A., Lin, L., Cahill, D.G., and Horsley, D.A., High quality factor nanocrystalline diamond micromechanical resonators limited by thermoelastic damping, Appl. Phys. Lett., 2014, vol. 104, no. 15, p. 151903.

    Article  Google Scholar 

  10. Liao, M., Hishita, S., Watanabe, E., Koizumi, S., and Koide, Y., Suspended single-crystal diamond nanowires for high-performance nanoelectromechanical switches, Adv. Mater., 2010, vol. 22, p. 5393.

    Article  Google Scholar 

  11. Liao, M., Toda, M., Sang, L., Hishita, S., Tanaka, S., and Koide, Y., Energy dissipation in micron-and submicron-thick single crystal diamond mechanical resonators, Appl. Phys. Lett., 2014, vol. 105, no. 25, p. 251904.

    Article  Google Scholar 

  12. Zalalutdinov, M.K., Ray, M.P., Photiadis, D.M., Robinson, J.T., Baldwin, J.W., Butler, J.E., Feygelson, T.I., Pate, B.B., and Houston, B.H., Ultrathin single crystal diamond nanomechanical dome resonators, Nano Lett., 2011, vol. 11, no. 9, p. 4304.

    Article  Google Scholar 

  13. Burek, M.J., Ramos, D., Patel, P., Frank, I.W., and Loncar, M., Nanomechanical resonant structures in single-crystal diamond, Appl. Phys. Lett., 2013, vol. 103, no. 13, p. 131904.

    Article  Google Scholar 

  14. Burek, M.J., Chu, Y., Liddy, M.S.Z., Patel, P., Rochman, J., Meesala, S., Hong, W., Quan, Q., Lukin, M.D., and Loncar, M., High quality-factor optical nanocavities in bulk single-crystal diamond, Nature Commun., 2014, vol. 5, no. 7, p. 5718.

    Article  Google Scholar 

  15. Aharonovich, I., Lee, J.C., Magyar, A.P., Buckley, B.B., Yale, C.G., Awschalom, D.D., and Hu, E.L., Homoepitaxial growth of single crystal diamond membranes for quantum information processing, Adv. Opt. Mater., 2012, vol. 24, p. OP54.

    Google Scholar 

  16. Lee, C.L., Gu, E., Dawson, M.D., Friel, I., and Scarsbrook, G.A., Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma, Diamond Relat. Mater., 2008, vol. 17, p. 1292.

    Article  Google Scholar 

  17. Mokuno, Y., Kato, Y., Tsubouchi, N., Chayahara, A., Yamada, H., and Shikata, S., A nitrogen doped lowdislocation density free-standing single crystal diamond plate fabricated by a lift-off process, Appl. Phys. Lett., 2014, vol. 104, no. 25, p. 252109.

    Article  Google Scholar 

  18. Ovartchaiyapong, P., Pascal, L.M.A., Myers, B.A., Lauria, P., and Bleszynski Jayich, A.C., High quality factor single-crystal diamond mechanical resonators, Appl. Phys. Lett., 2012, vol. 101, no. 16, p. 163505.

    Article  Google Scholar 

  19. Tao, Y., Boss, J.M., Moores, B.A., and Degen, C.L., Single-crystal diamond nanomechanical resonators with quality factors >1 million, Nature Commun., 2013, vol. 5, p. 3638.

    Google Scholar 

  20. Arcizet, O., Jacques, V., Siria, A., Poncharal, P., Vincent, P., and Seidelin, S., A single nitrogen-vacancy defect coupled to a nanomechanical oscillator, Nature Phys., 2011, vol. 7, no. 11, p. 879.

    Article  Google Scholar 

  21. Hong, S., Grinolds, M.S., Maletinsky, P., Walsworth, R.L., Lukin, M.D., and Yacoby, A., Coherent, mechanical control of a single electronic spin, Nano Lett., 2012, vol. 12, no. 7, p. 3920.

    Article  Google Scholar 

  22. Kolkowitz, S., Bleszynski Jayich, A.C., Unterreithmeier, Q.P., Bennett, S.D., Rabl, P., Harris, J.G.E., and Lukin, M.D., Coherent sensing of a mechanical resonator with a single-spin qubit, Science, 2012, vol. 335, p. 1603.

    Article  Google Scholar 

  23. Teissier, J., Barfuss, A., Appel, P., Neu, E., and Maletinsky, P., Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator, Phys. Rev. Lett., 2014, vol. 113, no. 2, p. 020503.

    Article  Google Scholar 

  24. Ovartchaiyapong, P., Lee, K.W., Myers, B.A., and Bleszynski Jayich, A.C., Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator, Nature Commun., 2014, vol. 5, p. 4429.

    Article  Google Scholar 

  25. MacQuarrie, E.E., Gosavi, T.A., Jungwirth, N.R., Bhave, S.A., and Fuchs, G.D., Mechanical spin control of nitrogen-vacancy centers in diamond, Phys. Rev. Lett., 2013, vol. 111, no. 22, p. 227602.

    Article  Google Scholar 

  26. Sorokin, B.P., Kvashnin, G.M., Volkov, A.P., Bormashov, V.S., Aksenenkov, V.V., Kuznetsov, M.S., Gordeev, G.I., and Telichko, A.V., AlN/single crystalline diamond piezoelectric structure as a high overtone bulk acoustic resonator, Appl. Phys. Lett., 2013, vol. 102, no. 11, p. 113507.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tsukanov.

Additional information

Original Russian Text © A.V. Tsukanov, 2016, published in Mikroelektronika, 2016, Vol. 45, No. 2, pp. 83–97.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsukanov, A.V. Nanoelectromechanical diamond structures in quantum informatics. Part I. Russ Microelectron 45, 77–90 (2016). https://doi.org/10.1134/S1063739716020104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739716020104

Keywords

Navigation