Skip to main content
Log in

Virtual scanning electron microscope. 5. Application in nanotechnology and in micro- and nanoelectronics

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The provided examples demonstrate the application of a simulator-based virtual scanning electron microscope (SEM) in certification of test object sizes on a low-voltage SEM and in calibration of a high-voltage SEM operating in the slow secondary electron detection mode. Using the virtual SEM, the problem of comparing different SEM calibration techniques is solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Technology Roadmap for Semiconductors, 2013 Edition, Metrology, 2013. 42 p. //public.itrs.net

  2. Postek, M.T., Nanometer-scale metrology, Proc. SPIE, 2002, vol. 4608, pp. 84–96.

    Article  Google Scholar 

  3. Postek, M.T. and Vladar, A.E., Critical Dimension Metrology and the Scanning Electron Microscope. Hand-book of Silicon Semiconductor Metrology, Diebold, A.C., Ed., New York-Basel: Marcel Dekker Inc., 2001. pp. 295–333.

  4. Novikov, Yu.A. and Rakov, A.V., Measurements of submicron pattern features on solid surfaces with a scanning electron microscope. 1. Instruments and methods (Review), Russ. Microelectron., 1996, vol. 25, no. 6, pp. 368–374.

    Google Scholar 

  5. Novikov, Yu.A. and Rakov, A.V., Measurements of submicron pattern features on solid surfaces with a scanning electron microscope. 2. New concept of scanning electron microscope-based metrology (Review), Russ. Microelectron., 1996, vol. 25, no. 6, pp. 375–383.

    MATH  Google Scholar 

  6. Hatsuzawa, T., Toyoda, K., and Tanimura, Y., Metrological electron microscope system for microfeature of very large scale integrated circuits, Rev. Sci. Instrum., 1990, vol. 61, no. 3, pp. 975–979.

    Article  Google Scholar 

  7. Volk, Ch.P., Gornev, E.S., Novikov, Yu.A., Ozerin, Yu.V., Plotnikov, Yu.I., Prokhorov, A.M., and Rakov, A.V., Linear standard for SEM-AFM microelectronics dimensional metrology in the range 0.01–100 μm, Russ. Microelectron., 2002, vol. 31, no. 4, pp. 207–223.

    Article  Google Scholar 

  8. Novikov, Yu.A., Gavrilenko, V.P., Ozerin, Yu.V., Rakov, A.V., and Todua, P.A., Silicon test object of the linewidth of the nanometer range for SEM and AFM, Proc. SPIE, 2007, vol. 6648, pp. 66480R-1–66480-R11.

    Article  Google Scholar 

  9. Volk, Ch.P., Gornev, E.S., Novikov, Yu.A., Ozerin, Yu.V., Plotnikov, Yu.I., and Rakov, A.V., Linear measurement in a wide magnification range, Russ. Microelectron., 2004, vol. 33, no. 6, pp. 342–349.

    Article  Google Scholar 

  10. Novikov, Yu.A., Gavrilenko, V.P., Rakov, A.V., and Todua, P.A., Test objects with right-angled and trapezoidal profiles of the relief elements, Proc. SPIE, 2008, vol. 7042, pp. 704208-1–704208-12.

    Google Scholar 

  11. Danilova, M.A., Mityukhlyaev, V.B., Novikov, Yu.A., Ozerin, Yu.V., Rakov, A.V., and Todua, P.A., A test object with a linewidth less than 10 nm for scanning electron microscopy, Measurement Techniques, 2008, vol. 51, no. 8, pp. 839–843.

    Article  Google Scholar 

  12. Gavrilenko, V.P., Kalnov, V.A., Novikov, Yu.A., Orlikovsky, A.A., Rakov, A.V., Todua, P.A., Valiev, K.A., and Zhikharev, E.N., Measurement of dimensions of resist mask elements below 100 nm with help of a scanning electron microscope, Proc. SPIE, 2009, vol. 7272, pp. 727227-1–727227-9.

    Google Scholar 

  13. Novikov, Yu.A., Virtual scanning electron microscope. 1. Objectives and tasks of virtual measuring instruments, Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2014, vol. 8, no. 6, pp. 1244–1251.

    Article  Google Scholar 

  14. Novikov, Yu.A., Virtual scanning electron microscope. 2. Principles of Instrument Construction, Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2015, vol. 9, no. 3, pp. 604–611.

    Article  Google Scholar 

  15. Novikov, Yu.A., Virtual scanning electron microscope. 3. A semiempirical model of the SEM signal generation, Russ. Microelectron., 2014, vol. 43, no. 4, pp. 258–269.

    Article  Google Scholar 

  16. Novikov, Yu.A., Virtual scanning electron microscope. 4. Simulator-based implementation, Russ. Microelectron., 2014, vol. 43, no. 6, pp. 427–437.

    Article  Google Scholar 

  17. Novikov, Yu.A., Ozerin, Yu.V., Plotnikov, Yu.I., Rakov, A.V., and Todua, P.A. Linear measure in the micrometer and nanometer ranges for scanning electron microscopy and atomic force microscopy, Linear measurements in micrometer and nanometer ranges for microelectronics and nanotechnology, Moscow: Nauka, 2006, pp. 36–76, (Proc. IOFAN, Vol. 62) [in Russian].

    Google Scholar 

  18. Frase, C.G., Hassler-Grohne, W., Dai, G., Bosse, H., Novikov, Yu.A., and Rakov, A.V., SEM linewidth measurements of anisotropically etched silicon structures smaller than 0.1 μm, Measurement Sci. Technol., 2007, vol. 18, pp. 439–447.

    Article  Google Scholar 

  19. Novikov, Yu.A., Electron distribution density in a lowvoltage SEM probe, Mikroelectronika, 2014, vol. 43, no. 5, pp. 361–370.

    Google Scholar 

  20. Volk, Ch.P., Gornev, E.S., Novikov, Yu.A., Plotnikov, Yu.I., Rakov, A.V., and Todua, P.A., Problems of measurement of geometric characteristics of electron probe of scanning electron microscope, Linear measurements in micrometer and nanometer ranges for microelectronics and nanotechnology, Moscow: Nauka, 2006, P. 77–120. (Proc. IOFAN, Vol. 62).

    Google Scholar 

  21. Gavrilenko, V.P., Novikov, Yu.A., Rakov, A.V., and Todua, P.A., Measurement of the parameters of the electron beam of a scanning electron microscope, Proc. SPIE, 2008, vol. 7042, pp. 70420C-1–12.

    Article  Google Scholar 

  22. Novikov, Yu.A., Imaging of a test object with a trapezoidal profile and large side wall inclinations in a scanning electron microscope in the backscattered electron mode, J. Surf. Investig. X-ray Synchrotron Neutron Tech., 2011, vol. 5, no. 5, pp. 917–923.

    Article  Google Scholar 

  23. Volk, Ch.P., Novikov, Yu.A., Rakov, A.V., and Todua, P.A., Calibrating a scanning electron microscope in two coordinates by the use of one certified dimension, Measur. Tech., 2008, vol. 51, no. 6, pp. 605–608.

    Article  Google Scholar 

  24. Gavrilenko, V.P., Lesnovskii, E.N., Novikov, Yu.A., Rakov, A.V., Todua, P.A., and Filippov, M.N., First Russian standards in nanotechnology, Bull. Russ. Acad. Sci., Physics, 2009, vol. 73, no. 4, pp. 433–440.

    Article  Google Scholar 

  25. Gavrilenko, V.P., Filippov, M.N., Novikov, Yu.A., Rakov, A.V., and Todua, P.A., Russian standards for dimensional measurements for nanotechnologies, Proc. SPIE, 2009, vol. 7378, pp. 737812-1–737812-8.

    Google Scholar 

  26. Novikov, Yu.A., Rakov, A.V., and Todua, P.A., Classification of test objects for use in calibration of scanning electron microscopes in the nanometric range, Measur. Tech., 2009, vol. 52, no. 2, pp. 142–147.

    Article  Google Scholar 

  27. Novikov, Yu.A., Gavrilenko, V.P., Rakov, A.V., and Todua, P.A., Test objects with right-angled and trapezoidal profiles of the relief elements, Proc. SPIE, 2008, vol. 7042, pp. 704208-1–704208-12.

    Google Scholar 

  28. Novikov, Yu.A., Rakov, A.V., and Stekolin, I.Yu., SEM measurements of VLSI submicron topography, Russ. Microelectron., 1995, vol. 24, no. 5, pp. 321–323.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Novikov.

Additional information

Original Russian Text © Yu.A. Novikov, 2015, published in Mikroelektronika, 2015, Vol. 44, No. 4, pp. 306–320.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, Y.A. Virtual scanning electron microscope. 5. Application in nanotechnology and in micro- and nanoelectronics. Russ Microelectron 44, 269–282 (2015). https://doi.org/10.1134/S1063739715030075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739715030075

Keywords

Navigation