Skip to main content
Log in

Electronic components and architecture of future supercomputers

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The development of architecture and electronic components of domestic and foreign supercomputers for over 50 years is reviewed from the first scalar computers CDC 6600, CDC 7600, IBM Stretch, and BESM-6 to modern systems with petascale performance. The following development stages are identified: scalar, vector-pipeline machines, massively parallel microprocessor systems, systems with accelerators and coprocessors, and heterogeneous systems on new components. The basic problems of the development of exascale systems are analyzed, and the plans of foreign companies to develop such systems are reviewed. Based on the experience in research on multiarchitecture systems, the author concludes that the development from personal computers to supersystems is wrong from a technical point of view and should not be repeated in our country. The supersystem development results should be used to create all classes of computers including PCs. The development of a domestic architecture, electronic components, and software for supersystems is an absolutely necessary condition for the strategic independence and guarantee of continuous development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thornton, J., Design of a Computer: The Control Data 6600, Glenview: Scott, Foresman and Company, 1970.

    Google Scholar 

  2. Mitropol’skii, Yu.I., BESM-6, AS-6, and their influence on the development of the national computer engineering, Inf. Tekhnol. Vychisl. Sist., Moscow: OITVS RAN, IMVS RAN, 2002, no. 3, pp. 49–58.

    Google Scholar 

  3. CDC 7600. http://en.wikipedia.org/wiki/CDC_7600

  4. Russell, R.M., The CRAY-1 computer system, Commun. ACM, 1978, vol. 21, no. 1, pp. 63–72.

    Article  Google Scholar 

  5. Cray X-MP. http://en.wikipedia.org/wiki/Cray-X-MP

  6. Cray-2. http://en.wikipedia.org/wiki/Cray-2

  7. ETA Systems Hardware Technologies (1983-88). http://www.ieeeghn.org/wiki/index.php/ETA_Systems_Hardware_Technologies_(1983–88)

  8. Mel’nikov, V.A., Mitropol’skii, Yu.I., and Shnitman, V.Z., Scientific, technological, and methodological aspects of the computer system Elektronika SS BIS-1, in Yubileinyi sbornik trudov Otdeleniya informatiki, vychislitel’noi tekhniki i avtomatizatsii Rossiiskoi akademii nauk (Anniversary Collection of Works of the Department of Informatics, Computer Science, and Automation of the Russian Academy of Sciences), Moscow: OIVTA RAN, 1993, pp. 28–41.

    Google Scholar 

  9. Melnikov, V.A., Mitropol’skii, Yu.I., and Reznikov, G.V., Designing the Electronica SS BIS supercomputer, IEEE Trans. Compon., Packag., Manuf. Technol., Part A, 1996, vol. 19, no. 2, pp. 151–156.

    Article  Google Scholar 

  10. Cray Y-MP. http://en.wikipedia.org/wiki/Cray_Y-MP

  11. Fujitsu VP2000. http://en.wikipedia.org/wiki/Fujitsu_VP2000

  12. Numerical Wind Tunnel (Japan). http://en.wikipedia.org/wiki/Numerical_Wind_Tunnel

  13. Connection Machine. http://en.wikipedia.org/wiki/Connection_Machine

  14. Intel Paragon. http://en.wikipedia.org/wiki/Intel_Paragon

  15. Hitachi SR2201. http://en.wikipedia.org/wiki/Hitachi_SR2201

  16. ASCI Red. http://en.wikipedia.org/wiki/ASCI_Red

  17. ASCI White. http://en.wikipedia.org/wiki/ASCI_White

  18. Japanese “Computenik” Earth Simulator shatters US supercomputer hegemony. http://www.hoise.com/primeur/02/articles/weekly/AE-PR-05-02-59.html

  19. Dunigan, T.H.,Jr., Fahey, M.R., White, J.B., III, and Worley, P.H., Early evaluation of the Cray X1, Proc. 2003 ACM/IEEE conference on Supercomputing, Phoenix, 2003.

    Google Scholar 

  20. Gara, A., Blumrich, M.A., Chen, D., Chiu, G.L.-T., et al., Overview of the Blue Gene/L system architecture, IBM J. Res. Dev., 2005.

    Google Scholar 

  21. RIKEN Reveals the First Ever PetaFlops Computer. http://www.rikenresearch.riken.jp/eng/roundup/4484.html

  22. NEC Launches World’s Fastest Vector Supercomputer, SX-9. http://www.nec.co.jp/press/en/0710/2501.html

  23. The Advantages of First-Generation Heterogeneous Computing on the Cray XT5h. www.scireview.org

  24. Barker, K.J., Davis, K., Hoisie, A., Kerbyson, D.J., Lang, M., Pakin, S., and Sancho, J.C., Entering the petaflop era: the architecture and performance of Roadrunner, in Proc. International Conference for High Performance Computing, Networking, Storage and Analysis, Austin, 2008, pp. 1–11.

    Google Scholar 

  25. Bland, A.S., Kendall, R.A., Kothe, D.B., Rogers, J.H., and Shipman, G.M., Jaguar: the world’s most powerful computer, Cray User Group, Atlanta, 2009.

    Google Scholar 

  26. Tianhe-1A. http://en.wikipedia.org/wiki/Tianhe-1A

  27. Feldman, M., Japanese Supercomputer Is New TOP500 Champ. http://www.hpcwire.com/hpcwire/2011-06-20/japanese_supercomputer_is_new_top500_champ.html

  28. Nozawa, T., Next-Generation Supercomputer to Be Scalar/Vector Multi-System, Developed by Hitachi, NEC and Fujitsu. http://techon.nikkeibp.co.jp/english/NEWS_EN/20070614/134244/

  29. DOE Labs Set Records with IBM Blue Gene/Q. http://www.hpcwire.com/hpcwire/2012-11-28/doe_labs_set_records_with_ibm_blue_gene_q.html

  30. Oak Ridge Claims no. 1 Position on Latest TOP500 List with Titan. http://www.top500.org/blog/lists/2012/11/press-release/

  31. Burt, J., China’s Tianhe-2 Still the World’s Fastest Supercomputer. http://www.eweek.com/servers/chinastianhe-2-still-the-worlds-fastest-supercomputer.html

  32. Intel Reveals Architecture Details of Intel Xeon Phi Co-Processor. http://www.cdrinfo.com/Sections/News/Details.aspx?NewsId=34114

  33. RSC PetaStream Sets New Record. http://www.hpcwire.com/off-the-wire/rsc-petastream-sets-new-record/

  34. Hemsoth, N., Emerging System Sets Stage for Exascale Science. http://www.hpcwire.com/2014/04/29/emergingsystem-sets-stage-exascale-science/

  35. NEC Announces Availability of SX-ACE Supercomputer. http://www.hpcwire.com/off-the-wire/nec-introduces-supercomputer-worlds-fastest-core-performance/

  36. Mitropol’skii, Yu.I., Concepts of heterogeneous computing supersystems, in Proc. Fifth International Workshop. Distributed Information Processing (Novosibirsk, 1995), Novosibirsk: ISP SB RAS, 1995, pp. 42–46.

    Google Scholar 

  37. Mitropol’skii, Yu.I., Architecture of the multipipeline modular scalable multiprocessor, in Proc. Sixth International Workshop. Distributed Information Processing (Novosibirsk, 1998), Novosibirsk: ISP SB RAS, 1998, pp. 30–34.

    Google Scholar 

  38. Mitropol’skii, Yu.I., Multiarchitecture computing supersystem, in Proc. First Scientific Conference. Methods and Tools for Information Processing (Moscow, 2003), Moscow: MSU, 2003, pp. 131–136.

    Google Scholar 

  39. Mitropol’skii, Yu.I., Multiarchitercture-a new paradigm for supercomputers, Elektron. NTB, 2005, no. 3, pp. 42–47.

    Google Scholar 

  40. Mitropol’skii, Yu.I., Project of scalable multi-level multiarchitecture computing system, in Fourth International Conference. Parallel Computations and Control Problems (Moscow, 2008), Moscow: ISC RAS, 2008, pp. 533–558.

    Google Scholar 

  41. Mitropol’skii, Yu.I., Principles of network structure of the multiarchitecture computer system, in Proc. International Scientific and Technical Conference. Supercomputer Technologies: Design, Programming, Application (Taganrog, 2010), Taganrog: TIT SFU, 2010, pp. 136–140.

    Google Scholar 

  42. Mitropol’skii, Yu.I., Problemy razrabotki novoi arkhitektury protsessorov i vychislitel’nykh sistem (Problems of the Development of the New Processor Architecture and Computer Systems), Orlikovskii, A.A., Ed., Moscow: Nauka, 2013, vol. 23, pp. 109–140.

  43. The Dally-nVIDIA-Stanford Prescription for Exascale Computing. http://www.mono-lithic3d.com/blog/thedally-nvidia-stanford-prescription-for-exascale-computing

  44. Sutter, H., The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software. http://www.gotw.ca/publications/concurrency-ddj.htm

  45. Toward Exascale Computing with Heterogeneous Architectures. http://sc10.supercomputing.org/schedule/event_detail.php?evid=pan129

  46. Tiffany, T., DOE Exascale Roadmap Highlights Big Data. http://www.hpcwire.com/2014/04/07/doe-exascaleroadmap-highlights-big-data/

  47. Hemsoth, N., Details Emerging on Japan’s Future Exascale System. http://www.hpcwire.com/2014/03/18/details-emerge-japans-future-exascale-system/

  48. Hemsoth, N., Peek into China’s Plans for Top Supercomputer Shows No Slowdown. http://www.hpcwire.com/2014/03/20/peek-chinas-plans-top-supercomputershows-slowdown/

  49. Gelber, R., China Looks to a National Processor Architecture. http://www.hpcwire.com/hpcwire/2012-04-24/china_looks_to_a_national_processor_architecture.html

  50. Anthony, S., HP Bets It All on The Machine, a New Computer Architecture Based on Memristors and Silicon Photonics. http://www.extremetech.com/extreme/184165-hp-bets-it-all-on-the-machine-a-new-computerarchitecture-based-on-memristors-and-silicon-photonics

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Mitropol’skii.

Additional information

Original Russian Text © Yu.I. Mitropol’skii, 2015, published in Mikroelektronika, 2015, Vol. 44, No. 3, pp. 163–179.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitropol’skii, Y.I. Electronic components and architecture of future supercomputers. Russ Microelectron 44, 139–153 (2015). https://doi.org/10.1134/S1063739715030063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739715030063

Keywords

Navigation