Skip to main content
Log in

Evaluation of the effective threshold energy of the Interband impact ionization in a deep-submicron silicon n-channel MOS transistor

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

Using the ensemble Monte Carlo method allowing for the main features of charge-carrier transport in conditions of strong electric fields, a deep-submicron silicon n-channel MOS transistor with a channel length of 50 nm is simulated. In the Keldysh impact ionization model with a soft threshold in a channel of the simulated transistor, the effective threshold energy of this process is calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fischetti, M.V. and Laux, S.E., Monte Carlo analysis of electron transport in small semiconductor devices including band structure and space-charge effects, Phys. Rev. B, 1988, vol. 38, pp. 9721–9745.

    Article  Google Scholar 

  2. Jacoboni, C. and Lugly, P., The Monte Carlo Method for Semiconductor Device Simulation, Wien-New York: Springer, 1989.

    Book  Google Scholar 

  3. Borzdov, V.M. and Komarov, F.F., Modelirovanie elektrofizicheskikh svoistv tverdotel’nykh sloistykh struktur integral’noi elektroniki (Simulation of Electrical Properties of Solid Layered Structures of Integrated Electronics), Minsk: Belarussian State Univ., 1999.

    Google Scholar 

  4. Capasso, F., Physics of avalanche photodiodes, in Semiconductors and Semimetals (Lightwave Communication Technology, vol. 22, Part D, Photodetectors), Willardson, R.K. and Beer, A.C., Eds., Orlando: Academic Press, 1985, pp. 2–168.

    Google Scholar 

  5. Anderson, C.L. and Crowell, C.R., Threshold energies for electron-hole pair production by impact ionization in semiconductors, Phys. Rev. B, 1972, vol. 5, no. 6, pp. 2267–2272.

    Article  Google Scholar 

  6. Keldysh, L.V., On the theory of impact ionization in semiconductors, Zh. Eksp. Teor. Fiz., 1965, vol. 48, no. 6, pp. 1692–1707.

    Google Scholar 

  7. Ridley, B.K., Soft-threshold lucky drift theory of impact ionization in semiconductors, Semicond. Sci. Technol., 1987, vol. 2, pp. 116–122.

    Article  Google Scholar 

  8. Bannov, N.A. and Kaz’min, O.I., Simulation of strongly nonequilibrium electron phenomena in sub-micron silicon MOS transistors, Mikroelektronika, 1989, vol. 18, no. 2, pp. 112–125.

    Google Scholar 

  9. Speransky, D., Borzdov, A., and Borzdov, V., Impact ionization process in deep submicron MOSFET, Int. J. Microelectron. Comp. Sci., 2012, vol. 3, no. 1, pp. 21–24.

    Google Scholar 

  10. Rengel, R., Mateos, J., Pardo, D., Gonzalez, T., and Martin, M.J., Monte Carlo analysis of dynamic and noise performance of submicron MOSFETs at RF and microwave frequencies, Semicond. Sci. Technol., 2001, vol. 16, pp. 939–946.

    Article  Google Scholar 

  11. Borzdov, V.M., Zhevnyak, O.G., Komarov, F.F., Galenchik, V.O. Modelirovanie metodom Monte-Karlo pribornykh struktur integral’noi elektroniki (Simulation of Devices Structures of Integrated Electronics by the Monte Carlo Method), Minsk: Belarussian State Univ., 2007.

    Google Scholar 

  12. Tang, J.Y. and Hess, K., Impact ionization of electrons in silicon (steady state), J. Appl. Phys., 1983, vol. 54, no. 9, pp. 5139–5144.

    Article  Google Scholar 

  13. Rodrigues-Bolivar, S., Gomez-Campos, F.M., and Carceller, J.E., Simple analytical valence band structure including warping and non-parabolicity to investigate hole transport in Si and Ge, Semicond. Sci. Technol., 2005, vol. 20, pp. 16–22.

    Article  Google Scholar 

  14. Rodrigues-Bolivar, S., Gomez-Campos, F.M., Gamiz, F., and Carceller, J.E., Implications of nonparabolicity, warping, and inelastic phonon scattering on hole transport in pure Si and Ge within the effective mass framework, J. Appl. Phys., 2005, vol. 97, pp. 013702-1–013702-10.

    Google Scholar 

  15. Gomez-Campos, F.M., Rodrigues-Bolivar, S., and Carceller, J.E., An efficient Monte Carlo procedure for studying hole transport in doped semiconductors, J. Comp. Electron, 2004, vol. 3, pp. 329–332.

    Article  Google Scholar 

  16. Mayergoyz, I.D., Solution of the nonlinear Poisson equation of semiconductor device theory, J. Appl. Phys., 1986, vol. 59, no. 1, pp. 195–199.

    Article  Google Scholar 

  17. Gonzalez, T. and Pardo, D., Physical models of ohmic contact for Monte Carlo device simulation, Solid-State Electron., 1996, vol. 39, no. 4, pp. 555–562.

    Article  Google Scholar 

  18. Kane, E.O., Electron scattering by pair production in silicon, Phys. Rev., 1967, vol. 159, no. 3, pp. 624–631.

    Article  Google Scholar 

  19. Sano, N., Tomizawa, M., and Yoshii, A., Monte Carlo analysis of ionization threshold in Si, Appl. Phys. Lett., 1990, vol. 56, no. 7, pp. 653–655.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Borzdov.

Additional information

Original Russian Text © V.M. Borzdov, A.V. Borzdov, D.S. Speransky, V.V. V’yurkov, A.A. Orlikovsky, 2014, published in Mikroelektronika, 2014, Vol. 43, No. 3, pp. 188–192.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borzdov, V.M., Borzdov, A.V., Speransky, D.S. et al. Evaluation of the effective threshold energy of the Interband impact ionization in a deep-submicron silicon n-channel MOS transistor. Russ Microelectron 43, 189–193 (2014). https://doi.org/10.1134/S1063739714010028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739714010028

Keywords

Navigation