Skip to main content
Log in

Numerical Modeling of the Collisions of Spheroidal Galaxies: Mass Loss Efficiency by Baryon Components

  • ASTRONOMY
  • Published:
Vestnik St. Petersburg University, Mathematics Aims and scope Submit manuscript

Abstract

The dynamics of the collision of two spheroidal galaxies, each of which consists of stellar and gas components inside a live massive dark halo, is considered in detail based on numerical simulations. Dark matter and stars are collisionless components, so their dynamics is modeled by the system of N body particles, and the gas component is described by the equations of gas dynamics. The calculation of gravitational forces is based on the direct summation method of the gravitational contribution from each particle, which provides the highest possible accuracy. We vary the impact parameter, the initial collision velocity, the masses of the three components for each model of the galaxies in order to estimate the relative fractions of the masses that are lost by both galaxies as a result of close interactions, as well as the masses of the gas and stars that are exchanged between the two galaxies during the scattering process. Estimating this exchanged mass of gas requires a Lagrangian approach to simulate gas dynamics, and the smoothed particle hydrodynamics method tracks the trajectory of each smoothed particle. There are two regions of parameters that separate the merging of two objects into one (large merging) and the case of scattering, when both gravitating systems move away from each other after interaction. The collisionless components (dark matter + stars) in the interaction of approximately the same galaxies lose their maximum mass at parameters close to the boundary between merging and scattering. If the initial masses of colliding galaxies differ greatly then the lost fraction of the mass is large for a low-mass object and small for a massive galaxy. The formation of global shock waves in colliding systems is a key factor determining the efficiency of sweeping gas from the gravitational potential well. The efficiency of the stellar-component transition from one object to another is negligible. Gas exchange can exceed 10 percent of the mass for a certain range of values of the impact parameter and the initial collision velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. E. Shin, M. Jung, G. Kwon, J. Kim, J. Lee, Y. Jo, and B. K. Oh, “Dark matter deficient galaxies produced via high-velocity galaxy collisions in high-resolution numerical simulations,” Astrophys. J. 899, 25 (2020). https://doi.org/10.3847/1538-4357/aba434

    Article  Google Scholar 

  2. S. Khoperskov, I. Zinchenko, B. Avramov, S. Khrapov, P. Berczik, A. Saburova, M. Ishchenko, A. Kho-perskov, C. Pulsoni, Yu. Venichenko, D. Bizyaev, and A. Moiseev, “Extreme kinematic misalignment in IllustrisTNG galaxies: the origin, structure, and internal dynamics of galaxies with a largescale counterrotation,” Mon. Not. R. Astron. Soc. 500, 3870–3888 (2021). https://doi.org/10.1093/mnras/staa3330

    Article  Google Scholar 

  3. P. J. E. Peebles, “Large-scale background temperature and mass fluctuations due to scale-invariant primeval perturbations,” Astrophys. J., Lett. 263, L1–L5 (1982). https://doi.org/10.1086/183911

    Article  Google Scholar 

  4. G. R. Blumenthal, S. M. Faber, J. R. Primack, and M. J. Rees, “Formation of galaxies and large-scale structure with cold dark matter,” Nature 311, 517–525 (1984). https://doi.org/10.1038/311517A0

    Article  Google Scholar 

  5. A. Pillepich, V. Springel, D. Nelson, S. Genel, J. Naiman, R. Pakmor, L. Hernquist, P. Torrey, M. Vogelsberger, R. Weinberger, and F. Marinacci, “Simulating galaxy formation with the IllustrisTNG model,” Mon. Not. R. Astron. Soc. 473, 4077–4106 (2018). https://doi.org/10.1093/mnras/stx2656

    Article  Google Scholar 

  6. R. H. Wechsler and J. L. Tinker, “The connection between galaxies and their dark matter halos,” Annu. Rev. Astron. Astrophys. 56, 435–487 (2018). https://doi.org/10.1146/annurev-astro-081817-051756

    Article  Google Scholar 

  7. M. Vogelsberger, F. Marinacci, P. Torrey, and E. Puchwein, “Cosmological simulations of galaxy formation,” Nat. Rev. Phys. 2, 42–66 (2020). https://doi.org/10.1038/s42254-019-0127-2

    Article  Google Scholar 

  8. S. Tacchella, B. Diemer, L. Hernquist, S. Genel, F. Marinacci, D. Nelson, A. Pillepich, V. Rodriguez Gomez, L. Sales, V. Springel, and M. Vogelsberger, “Morphology and star formation in IllustrisTNG: the build-up of spheroids and discs,” Mon. Not. R. Astron. Soc. 487, 5416–5440 (2019). https://doi.org/10.1093/mnras/stz1657

    Article  Google Scholar 

  9. G. Zeng, L. Wang, and L. Gao, “Formation of massive disc galaxies in the IllustrisTNG simulation,” Mon. Not. R. Astron. Soc. 507, 3301–3311 (2021). https://doi.org/10.1093/mnras/stab2294

    Article  Google Scholar 

  10. D. Pathak, S. Belli, and R. Weinberger, “Quenching, mergers, and age profiles for z = 2 galaxies in IllustrisTNG,” Astrophys. J., Lett. 916, L23 (2021). https://doi.org/10.3847/2041-8213/ac13a7

    Article  Google Scholar 

  11. I. D. Karachentsev, V. E. Karachentseva, A. A. Suchkov, and E. K. Grebel, “Dwarf galaxy candidates found on the SERC EJ sky survey,” Astron. Astrophys., Suppl. Ser. 145, 415–423 (2000). https://doi.org/10.1051/aas:2000249

    Article  Google Scholar 

  12. P. van Dokkum, S. Danieli, Cohen Y, A. Merritt, A. J. Romanowsky, R. Abraham, J. Brodie, C. Conroy, D. Lokhorst, L. Mowla, E. O’Sullivan, and J. Zhang, “A galaxy lacking dark matter,” Nature 555, 629–632 (2018). https://doi.org/10.1038/nature25767

    Article  Google Scholar 

  13. L. N. Makarova and D. I. Makarov, “Spatial segregation impact on star formation in nearby dwarf spheroidal galaxies,” Mon. Not. R. Astron. Soc. 502, 1623–1632 (2021). https://doi.org/10.1093/mnras/stab143

    Article  Google Scholar 

  14. A. V. Zasov, A. S. Saburova, O. V. Egorov, and A. V. Moiseev, “NGC 90: a hidden jellyfish galaxy?,” Mon. Not. R. Astron. Soc. 498, 101–109 (2020). https://doi.org/10.1093/mnras/staa2283

    Article  Google Scholar 

  15. D. Makarov and I. Karachentsev, “Galaxy groups and clouds in the local (z ∼ 0.01) Universe,” Mon. Not. R. Astron. Soc. 412, 2498–2520 (2011). https://doi.org/10.1111/j.1365-2966.2010.18071.x

    Article  Google Scholar 

  16. A. V. Tutukov, G. G. Lazareva, and I. M. Kulikov, “Gas dynamics of a central collision of two galaxies: Merger, disruption, passage, and the formation of a new galaxy,” Astron. Rep. 55, 770–783 (2011). https://doi.org/10.1134/S1063772911090083

    Article  Google Scholar 

  17. V. A. Vshivkov, G. G. Lazareva, A. V. Snytnikov, I. M. Kulikov, and A. V. Tutukov, “Hydrodynamical code for numerical simulation of the gas components of colliding galaxies,” Astrophys. J., Suppl. Ser. 194, 47 (2011). https://doi.org/10.1088/0067-0049/194/2/47

    Article  Google Scholar 

  18. S. S. Khrapov, A. V. Khoperskov, and V. I. Korchagin, “Numerical modelling of the dynamics of the galactic halos in the colliding galaxies,” Bull. South Ural State Univ., Ser.: Math. Modell. Program. Comput. Software 12 (2), 123–135 (2019). https://doi.org/10.14529/mmp190210

    Article  MATH  Google Scholar 

  19. I. Kulikov, I. Chernykh, and A. Tutukov, “A new hydrodynamic model for numerical simulation of interacting galaxies on Intel Xeon Phi supercomputers,” J. Phys.: Conf. Ser. 719, 012006 (2016). https://doi.org/10.1088/1742-6596/719/1/012006

    Article  Google Scholar 

  20. S. S. Khrapov, S. A. Khoperskov, and A. V. Khoperskov, “New features of parallel implementation of Nbody problems on GPU,” Bull. South Ural State Univ., Ser.: Math. Modell. Program. Comput. Software 11 (1), 124–136 (2018).

    MATH  Google Scholar 

  21. A. M. Fridman and A. V. Khoperskov, Physics of Galactic Disks (Cambridge International Science, Cambridge, 2013).

    Google Scholar 

  22. A. A. Smirnov, N. Ya. Sotnikova, and A. A. Koshkin, “Simulations of slow bars in anisotropic disk systems,” Astron. Lett. 43, 61–74 (2017). https://doi.org/10.1134/S1063773717020062

    Article  Google Scholar 

  23. J. J. Monaghan, “Smoothed particle hydrodynamics,” Rep. Prog. Phys. 68, 1703–1759 (2005). https://doi.org/10.1088/0034-4885/68/8/R01

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Khrapov and A. Khoperskov, “Smoothed-particle hydrodynamics models: implementation features on GPUs,” Commun. Comput. Inf. Sci. 793, 266–277 (2017). https://doi.org/10.1007/978-3-319-71255-0_21

    Article  Google Scholar 

  25. V. I. Bogatko and E. A. Potekhina, “To the problem of modeling gas flows behind the strong shock wave front using an effective adiabatic index,” Vestn. St. Petersburg Univ.: Math. 53, 77–81 (2020). https://doi.org/10.1134/S1063454120010033

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Khrapov, A. Khoperskov, and V. Korchagin, “Modeling of spiral structure in a multi-component Milky Way-like galaxy,” Galaxies 9, 29 (2021). https://doi.org/10.3390/galaxies9020029

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We express our appreciation and deep gratitude to Associate Professor Sergei Sergeevich Khrapov for valuable comments and for kindly providing programs for parallel computing on GPUs.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (government task no. 0633-2020-0003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Titov or A. V. Khoperskov.

Ethics declarations

Cite this work: Titov A.V. and Khoperskov A.V., Numerical modeling of collisions of spheroidal galaxies: mass loss efficiency by baryon components, Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., 2022, vol. 9 (67), no. 1, pp. 176–189 (in Russian). https://doi.org/10.21638/spbu01.2022.117

Additional information

Translated by E. Seifina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titov, A.V., Khoperskov, A.V. Numerical Modeling of the Collisions of Spheroidal Galaxies: Mass Loss Efficiency by Baryon Components. Vestnik St.Petersb. Univ.Math. 55, 124–134 (2022). https://doi.org/10.1134/S1063454122010149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063454122010149

Keywords:

Navigation