Skip to main content
Log in

Carbohydrate-Binding Activities of Agglutinins in Invertebrates from the Sea of Japan

  • ORIGINAL PAPERS
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

In this study, activities and carbohydrate specificities of agglutinins in body fluids of invertebrates from waters of the Russian coast of the Sea of Japan were assessed. Samples from 30 animal species belonging to four phyla, seven classes, and the order Sipuncula (Annelida: Polychaeta, Sipuncula; Arthropoda: Thecostraca, Malacostraca; Mollusca: Bivalvia, Gastropoda; Echinodermata: Holothuroidea, Asteroidea) were analyzed. For samples of 12 species, a range of carbohydrate specificities was determined, some of which are characteristic of corresponding systematic groups, and the other are unique and have not previously been mentioned in the literature. In addition, for the studied representatives of four classes (Polychaeta, Thecostraca, Malacostraca, and Bivalvia) and the order Sipuncula, patterns of similarities and differences in the carbohydrate specificities of their agglutinins were identified. For example, the specificity to acidic and neutral carbohydrates of pathogen-associated molecular patterns was clearly pronounced for polychaetes and, to a lesser extent, for malacostracans. In the case of bivalves and barnacles, another most evident specificity was that to N-acetylated amines. Sipunculans, which are one of the least studied groups as regards the carbohydrate specificity of agglutinins, showed a unique pattern of specificity with the highest inhibitory effect to pectin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Sharon, N. and Lis, H., Lectins, Dordrecht: Springer, 2007.

    Book  Google Scholar 

  2. Mitchell, C.A., Ramessar, K., and O’Keefe, B.R., Antiviral lectins: Selective inhibitors of viral entry, Antiviral Res., 2017, vol. 142, pp. 37–54. https://doi.org/10.1016/j.antiviral.2017.03.007

    Article  Google Scholar 

  3. Devi, R.V. and Basil-Rose, M.R., Lectins as ligands for directing nanostructured systems, Curr. Drug Delivery, 2018, vol. 15, pp. 448–452. https://doi.org/10.2174/1567201815666180108101246

    Article  Google Scholar 

  4. Catanzaro, E., Calcabrini, C., Bishayee, A., and Fimognari, C., Antitumor potential of marine and freshwater lectins, Mar. Drugs, 2019, vol. 18, 11. https://doi.org/10.3390/md18010011

    Article  Google Scholar 

  5. Mishra, A., Behura, A., Mawatwal, S., Kumar, A., Naik, L., Mohanty, S.S., Manna, D., Dokania, P., Mishra, A., Patra, S.K., and Dhiman, R., Structure-function and application of plant lectins in disease biology and immunity, Food Chem. Toxicol., 2019, vol. 134, 110827. https://doi.org/10.1016/j.fct.2019.110827

    Article  Google Scholar 

  6. Wu, A.M. and Liu, J.H., Lectins and ELLSA as powerful tools for glycoconjugate recognition analyses, Glycoconjugate J., 2019, vol. 36, pp. 175–183. https://doi.org/10.1007/s10719-019-09865-3

    Article  Google Scholar 

  7. Hassan, S.-U., Donia, A., Sial, U., Zhang, X., and Bokhari, H., Glycoprotein- and lectin-based approaches for detection of pathogens, Pathogens, 2020, vol. 9, 694. https://doi.org/10.3390/pathogens9090694

    Article  Google Scholar 

  8. Wang, W., Song, X., Wang, L., and Song, L., Pathogen-derived carbohydrate recognition in molluscs immune defense, Int. J. Mol. Sci., 2018, vol. 19, 721. https://doi.org/10.3390/ijms19030721

    Article  Google Scholar 

  9. Gerdol, M., Gomez-Chiarri, M., Castillo, M.G., Figueras, A., Fiorito, G., Moreira, R., Novoa, B., Pallavicini, A., Ponte, G., and Roumbedakis, K., Immunity in molluscs: Recognition and effector mechanisms, with a focus on Bivalvia, in Advances in Comparative Immunology, Cooper, E., Ed., Cham: Springer, 2018, pp. 225–341.

    Google Scholar 

  10. Powell, D., Subramanian, S., Suwansa-ard, S., Zhao, M., O’Connor, W., Raftos, D., and Elizur, A., The genome of the oyster Saccostrea offers insight into the environmental resilience of bivalves, DNA Res., 2018, vol. 25, pp. 655–665. https://doi.org/10.1093/dnares/dsy032

    Article  Google Scholar 

  11. Gerdol, M., Greco, S., and Pallavicini, A., Extensive tandem duplication events drive the expansion of the C1q-domain-containing gene family in Bivalves, Mar. Drugs, 2019, vol. 17, 583. https://doi.org/10.3390/md17100583

    Article  Google Scholar 

  12. Mun, S., Kim, Y.-J., Markkandan, K., Shin, W., Oh, S., Woo, J., Yoo, J., An, H., and Han, K., The whole-genome and transcriptome of the Manila clam (Ruditapes philippinarum), Genome Biol. Evol., 2017, vol. 9, pp. 1487–1498. https://doi.org/10.1093/gbe/evx096

    Article  Google Scholar 

  13. Chen, J., Liu, T., Gao, J., Gao, L., Zhou, L., Cai, M., Shi, Y., Xiong, W., Jiang, J., Tong, T., and Wang, H., Variation in carbohydrates between cancer and normal cell membranes revealed by super-resolution fluorescence imaging, Adv. Sci., 2016, vol. 3, 1600270. https://doi.org/10.1002/advs.201600270

    Article  Google Scholar 

  14. Gorelik, E., Galili, U., and Raz, A., On the role of cell surface carbohydrates and their binding proteins (lectins) in tumor metastasis, Cancer Metastasis Rev., 2001, vol. 20, pp. 245–277. https://doi.org/10.1023/A:1015535427597

    Article  Google Scholar 

  15. Grinchenko, A., Sokolnikova, Y., Korneiko, D., and Kumeiko, V., Dynamics of the immune response of the horse mussel Modiolus kurilensis (Bernard, 1983) following challenge with heat-inactivated bacteria, J. Shellfish Res., 2015, vol. 34, pp. 909–917.

    Article  Google Scholar 

  16. Tatsumi, M., Hosokawa, N., Arai, Y., and Itoh, T., Purification of lectin from some shellfish and Ascidiacea, Carbohydr. Res., 1982, vol. 108, pp. 148–152. https://doi.org/10.1016/s0008-6215(00)81900-x

    Article  Google Scholar 

  17. Bulgakov, A.A., Eliseikina, M.G., Petrova, I.Y., Nazarenko, E.L., Kovalchuk, S.N., Kozhemyako, V.B., and Rasskazov, V.A., Molecular and biological characterization of a mannan-binding lectin from the holothurian Apostichopus japonicus, Glycobiology, 2007, vol. 17, pp. 1284–1298. https://doi.org/10.1093/glycob/cwm093

    Article  Google Scholar 

  18. Breitenbach Barroso Coelho, L.C., Marcelino Dos Santos Silva, P., Felix de Oliveira, W., de Moura, M.C., Viana Pontual, E., Soares Gomes, F., Guedes Paiva, P.M., Napoleão, T.H., and Dos Santos Correia, M.T., Lectins as antimicrobial agents, J. Appl. Microbiol., 2018, vol. 125, pp. 1238–1252. https://doi.org/10.1111/jam.14055

    Article  Google Scholar 

  19. Garte, S.J. and Russell, C.S., Isolation and characterization of a hemagglutinin from Amphitrite ornata, a polychaetous annelid, Biochim. Biophys. Acta, Protein Struct., 1976, vol. 439, pp. 368–379. https://doi.org/10.1016/0005-2795(76)90073-8

    Article  Google Scholar 

  20. Kawsar, S.M.A., Takeuchi, T., Kasai, K., Fujii, Y., Matsumoto, R., Yasumitsu, H., and Ozeki, Y., Glycan-binding profile of a D-galactose binding lectin purified from the annelid, Perinereis nuntia ver. vallata, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2009, vol. 152, pp. 382–389. https://doi.org/10.1016/j.cbpb.2009.01.009

    Article  Google Scholar 

  21. Chernikov, O.V., Molchanova, V.I., Chikalovets, I.V., Kondrashina, A.S., Li, W., and Lukyanov, P.A., Lectins of marine hydrobionts, Biochemistry (Moscow), 2013, vol. 78, pp. 760–770. https://doi.org/10.1134/S0006297913070080

    Article  Google Scholar 

  22. Wright, R.K. and Cooper, E.L., Protochordate immunity—II. Diverse hemolymph lectins in the solitary tunicate Styela clava, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 1984, vol. 79, pp. 269–277. https://doi.org/10.1016/0305-0491(84)90025-7

    Article  Google Scholar 

  23. Manning, J.C., Romero, A., Habermann, F.A., Caballero, G.G., Kaltner, H., and Gabius, H.-J., Lectins: A primer for histochemists and cell biologists, Histochem. Cell Biol., 2017, vol. 147, pp. 199–222. https://doi.org/10.1007/s00418-016-1524-6

    Article  Google Scholar 

  24. Yeaton, R.W., Invertebrate lectins: II. Diversity of specificity, biological synthesis and function in recognition, Dev. Comp. Immunol., 1981, vol. 5, pp. 535–545. https://doi.org/10.1016/S0145-305X(81)80028-6

    Article  Google Scholar 

  25. Olafsen, J.A., Invertebrate lectins: Biochemical heterogeneity as a possible key to their biological function, in Immunity in Invertebrates, Brehelin, M., Ed., Berlin: Springer, 1986, pp. 94–111.

    Google Scholar 

  26. Datta, D., Talapatra, S.N., and Swarnakar, S., An overview of lectins from freshwater and marine macroinvertebrates, World Sci. News, 2016, vol. 46, pp. 77–87.

    Google Scholar 

  27. Chatterjee, B.P. and Adhya, M., Lectins with varying specificity and biological activity from marine bivalves, in Marine Proteins and Peptides, Kim, S.K., Ed., New York: Wiley, 2013, pp. 41–68.

    Google Scholar 

  28. Adhya, M. and Singha, B., Gal/GalNAc specific multiple lectins in marine bivalve Anadara granosa, Fish Shellfish Immunol., 2016, vol. 50, pp. 242–246. https://doi.org/10.1016/j.fsi.2016.01.036

    Article  Google Scholar 

  29. Bulgakov, A.A., Park, K.-I., Choi, K.-S., Lim, H.-K., and Cho, M., Purification and characterisation of a lectin isolated from the Manila clam Ruditapes philippinarum in Korea, Fish Shellfish Immunol., 2004, vol. 16, pp. 487–499. https://doi.org/10.1016/j.fsi.2003.08.006

    Article  Google Scholar 

  30. Zipris, D., Gilboa-Garber, N., and Susswein, A.J., Interaction of lectins from gonads and haemolymph of the sea hare Aplysia with bacteria, Microbios, 1986, vol. 46, pp. 193–198.

    Google Scholar 

  31. Wu, A.M., Song, S.C., Chen, Y.Y., and Gilboa-Garber, N., Defining the carbohydrate specificities of Aplysia gonad lectin exhibiting a peculiar D-galacturonic acid affinity, J. Biol. Chem., 2000, vol. 275, pp. 14017–14024. https://doi.org/10.1074/jbc.275.19.14017

    Article  Google Scholar 

  32. Grinchenko, A.V., von Kriegsheim, A., Shved, N.A., Egorova, A.E., Ilyaskina, D.V., Karp, T.D., Goncharov, N.V., Petrova, I.Y., and Kumeiko, V.V., A novel C1q domain-containing protein isolated from the mollusk Modiolus kurilensis recognizing glycans enriched with acidic galactans and mannans, Mar. Drugs, 2021, vol. 19, 668. https://doi.org/10.3390/md19120668

    Article  Google Scholar 

  33. Tateno, H., Saneyoshi, A., Ogawa, T., Muramoto, K., Kamiya, H., and Saneyoshi, M., Isolation and characterization of rhamnose-binding lectins from eggs of steelhead trout (Oncorhynchus mykiss) homologous to low density lipoprotein receptor superfamily, J. Biol. Chem., 1998, vol. 273, pp. 19190–19197. https://doi.org/10.1074/jbc.273.30.19190

    Article  Google Scholar 

  34. Marchalonis, J.J. and Edelman, G.M., Isolation and characterization of a hemagglutinin from Limulus polyphemus, J. Mol. Biol., 1968, vol. 32, pp. 453–465. https://doi.org/10.1016/0022-2836(68)90022-3

    Article  Google Scholar 

  35. Elayabharathi, T., Vinoliya Josephine Mary, J., and Mary Mettilda Bai, S., Characterization of a novel O-acetyl sialic acid specific lectin from the hemolymph of the marine crab, Atergatis integerrimus (Lamarck, 1818), Fish Shellfish Immunol., 2020, vol. 106, pp. 1131–1138. https://doi.org/10.1016/j.fsi.2020.07.039

    Article  Google Scholar 

  36. Yang, H., Luo, T., Li, F., Li, S., and Xu, X., Purification and characterisation of a calcium-independent lectin (PjLec) from the haemolymph of the shrimp Penaeus japonicus, Fish Shellfish Immunol., 2007, vol. 22, pp. 88–97. https://doi.org/10.1016/j.fsi.2006.03.015

    Article  Google Scholar 

  37. Ballarin, L. and Favero, M.D., Identification and preliminary characterization of a Ca2+-dependent hemagglutinin in the celomic fluid of Sipunculus nudus, Invertebr. Survival J., 2010, vol. 7, pp. 221–227.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the staff of the Vostok Marine Biological Station and of the Shared Resource Center Primorsky Aquarium for the opportunity to collect animals and technical assistance (both at Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia).

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 0657-2020-0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kumeiko.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buriak, I.A., Grinchenko, A.V., Maiorova, A.S. et al. Carbohydrate-Binding Activities of Agglutinins in Invertebrates from the Sea of Japan. Russ J Mar Biol 48, 513–520 (2022). https://doi.org/10.1134/S1063074022060037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074022060037

Keywords:

Navigation