Skip to main content
Log in

Variability of Regeneration Mechanisms in Echinoderms

  • REVIEW
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

Several fundamentally different pathways may exist to restore a lost structure in closely related species or within the same species of multicellular animals; this phenomenon is described using the example of the echinoderm digestive system. We propose to call this phenomenon “variability of regeneration mechanisms.” In echinoderms, it is manifested as differences in the spatial organization of the regeneration process and in the cell sources that are involved. The variability of regeneration mechanisms in the phylum Echinodermata can probably be explained by the availability of several regeneration pathways in the ancestral forms of deuterostomes, which differ in the involvement of various cell types, the depth of reprogramming of their genome (dedifferentiation or transdifferentiation), and the role of epithelial–mesenchymal transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Vorontsova, M.A. and Liosner, L.D., Asexual Propagation and Regeneration, London: Pergamon Press, 1960.

    Google Scholar 

  2. Dolmatov, I.Yu., Regeneration potential and its changes during ontogenesis of holothurians, Ontogenez, 1994, vol. 25, no. 1, pp. 31–37.

    Google Scholar 

  3. Dolmatov, I.Yu., Asexual reproduction, evisceration, and regeneration in holothurians, Russ. J. Dev. Biol., 1996, vol. 27, no. 4, pp. 256–265.

    Google Scholar 

  4. Dolmatov, I.Yu., Regeneration in echinoderms, Russ. J. Mar. Biol., 1999, vol. 25, no. 3, pp. 225–233.

    Google Scholar 

  5. Dolmatov, I.Yu., Regeneration of the digestive system in holothurians, Zh. Obshch. Biol., 2009, vol. 70, no. 4, pp. 316–327.

    PubMed  Google Scholar 

  6. Dolmatov, I.Yu., New data on asexual reproduction, autotomy, and regeneration in holothurians of the order Dendrochirotida, Russ. J. Mar. Biol., 2014, vol. 40, no. 3, pp. 228–232.

    Article  Google Scholar 

  7. Dolmatov, I.Yu. and Mashanov, V.S., Regeneratsiya u iglokozhikh (Regeneration in Echinoderms), Vladivostok: Dal’nauka, 2007.

  8. Dolmatov, I.Yu., Nguyen An Khang, and Kamenev, Ya.O., Asexual reproduction, evisceration, and regeneration in holothurians (Holothuroidea) from Nha Trang Bay of the South China Sea, Russ. J. Mar. Biol., 2012, vol. 38, no. 3, pp. 243–252.

    Article  Google Scholar 

  9. El’chaninov, A.V. and Fatkhudinov, T.Kh., Regeneratsiya pecheni mlekopitayushchikh. Mezhkletochnye vzaimodeistviya (Regeneration of Mammal Liver: Intercellular Interaction), Moscow: Nauka, 2020.

  10. Zavalnaya, E.G., Shamshurina, E.V., and Eliseikina, M.G., The immunocytochemical identification of PIWI-positive cells during the recovery of a coelomocyte population after evisceration in the holothurian Eupentacta fraudatrix (Djakonov et Baranova, 1958) (Holothuroidea: Dendrochirota), Russ. J. Mar. Biol., 2020, vol. 46, no. 2, pp. 97–104.

    Article  CAS  Google Scholar 

  11. Korotkova, G.P., Regeneratsiya zhivotnykh (Regeneration of Animals), St. Petersburg: S.-Peterb. Univ., 1997.

  12. Kostyuchenko, R.P., Kozin, V.V., and Kupriashova, E.E., Regeneration and asexual reproduction in annelids: Cells, genes, and evolution, Biol. Bull. (Moscow), 2016, vol. 43, pp. 185–194.

    Article  Google Scholar 

  13. Leibson, N.L. and Dolmatov, I.Yu., Evisceration and regeneration of the internal complex in the holothurian Eupentacta fraudatrix (Holothuroidea, Dendrochirota), Zool. Zh., 1989, vol. 68, no. 8, pp. 67–74.

    Google Scholar 

  14. Mashanov, V.S. and Dolmatov, I.Yu., Ultrastructure of the alimentary canal in five-month-old pentactulae of the holothurian Eupentacta fraudatrix, Russ. J. Mar. Biol., 2001, vol. 27, no. 5, pp. 320–328.

    Article  Google Scholar 

  15. Mashanov, V.S., Frolova, L.T., and Dolmatov, I.Yu., Structure of the digestive tube in the holothurian Eupentacta fraudatrix (Holothuroidea, Dendrochirota), Russ. J. Mar. Biol., 2004, vol. 30, no. 5, pp. 314–322.

    Article  Google Scholar 

  16. Nikanorova, D.D., Kupryashova, E.E., and Kostyuchenko, R.P., Regeneration in annelids: Cell sources, tissue remodeling, and differential gene expression, Russ. J. Dev. Biol., 2020, vol. 51, pp. 148–161.

    Article  Google Scholar 

  17. Vogt, C., Zoologicheskie ocherki ili staroye in novoye iz zhizni lyudei i zhivotnykh (Zoological Essays, or the Old and the New about the Life of Humans and Animals), St. Petersburg: Tipografiya O.I. Baksta, 1864.

  18. Frolova, L.T. and Dolmatov, I.Yu., Regeneration of the epithelial lining of the stomach after autotomy of a disk in the brittle star Amphipholis kochii (Lütken) (Echinodermata: Ophiuroidea), Russ. J. Mar. Biol., 2006, vol. 32, no. 1, pp. 68–70.

    Article  Google Scholar 

  19. Shukalyuk, A.I. and Dolmatov, I.Yu., Regeneration of the digestive tube in the holothurian Apostichopus japonicus after evisceration, Russ. J. Mar. Biol., 2001, vol. 27, no. 3, pp. 168–173.

    Article  Google Scholar 

  20. Arimoto, A. and Tagawa, K., Regeneration in the enteropneust hemichordate, Ptychodera flava, and its evolutionary implications, Dev., Growth Differ., 2018, vol. 60, pp. 400–408.

    Article  Google Scholar 

  21. Bai, M.M., Regeneration in the holothurian, Holothuria scabra Jager, Indian J. Exp. Biol., 1971, vol. 9, pp. 467–471.

    CAS  PubMed  Google Scholar 

  22. Bely, A.E. and Nyberg, K.G., Evolution of animal regeneration: re-emergence of a field, Trends Ecol. Evol., 2010, vol. 25, pp. 161–170.

    Article  PubMed  Google Scholar 

  23. Bely, A.E., Zattara, E.E., and Sikes, J.M., Regeneration in spiralians: evolutionary patterns and developmental processes, Int. J. Dev. Biol., 2014, vol. 58, pp. 623–634.

    Article  PubMed  Google Scholar 

  24. Bertolini, F., Rigenerazione dell’apparato digerente nello Stichopus regalis, Pubbl. Staz. Zool. Napoli, 1930, vol. 10, pp. 439–449.

    Google Scholar 

  25. Bertolini, F., Rigenerazione dell’apparato digerente nello Holothuria, Pubbl. Stn. Zool. Napoli, 1932, vol. 12, pp. 432–443.

    Google Scholar 

  26. Biressi, A.C.M., Zou, T., Dupont, S., et al., Wound healing and arm regeneration in Ophioderma longicaudum and Amphiura filiformis (Ophiuroidea, Echinodermata): comparative morphogenesis and histogenesis, Zoomorphology, 2010, vol. 129, pp. 1–19.

    Article  Google Scholar 

  27. Bobrovskaya, N.V. and Dolmatov, I.Yu., Autotomy of the visceral mass in the feather star Himerometra robustipinna (Crinoidea, Comatulida), Biol. Bull., 2014, vol. 226, pp. 81–91.

    Article  PubMed  Google Scholar 

  28. Borisov, A.B., Regeneration of skeletal and cardiac muscle in mammals: do nonprimate models resemble human pathology?, Wound Repair Regener., 1999, vol. 7, pp. 26–35.

    Article  CAS  Google Scholar 

  29. Candia Carnevali, M.D. and Bonasoro, F., Microscopic overview of crinoid regeneration, Microsc. Res. Tech., 2001, vol. 55, pp. 403–426.

    Article  CAS  PubMed  Google Scholar 

  30. Candia Carnevali, M.D., Regeneration in echinoderms: repair, regrowth, cloning, Invertebr. Survival J., 2006, vol. 3, pp. 64–76.

    Google Scholar 

  31. Carlson, B.M., Principles of Regenerative Biology, San Diego, Calif.: Academic, 2007.

    Google Scholar 

  32. Clark, A.H., A Monograph of the Existing Crinoids, vol. 1: The Comatulids, United States National Museum, Bulletin 82, Washington DC: Gov. Printing Office, 1921, part 2.

  33. Dawbin, W.H., Auto-evisceration and the regeneration of viscera in the holothurian Stichopus mollis (Hutton), Trans. R. Soc. N. Z., 1949, vol. 77, pp. 497–523.

    Google Scholar 

  34. Dendy, A., On the regeneration of the visceral mass in Antedon rosaceus, Stud. Biol. Lab. Owens Coll., 1886, vol. 1, pp. 299–312.

    Google Scholar 

  35. Dolmatov, I.Yu., Asexual reproduction in holothurians, Sci. World J., 2014, vol. 2014, art. ID 527234. https://doi.org/10.1155/2014/527234

    Article  Google Scholar 

  36. Dolmatov, I.Y., Eliseikina, M.G., Ginanova, T.T., et al., Muscle regeneration in the holothurian Stichopus japonicus, Roux’s Arch. Dev. Biol., 1996, vol. 205, pp. 486–493.

    Article  CAS  Google Scholar 

  37. Dolmatov, I.Yu. and Ginanova, T.T., Muscle regeneration in holothurians, Microsc. Res. Tech., 2001, vol. 55, pp. 452–463.

    Article  CAS  PubMed  Google Scholar 

  38. Dolmatov, I.Y. and Ginanova, T.T., Post-autotomy regeneration of respiratory trees in the holothurian Apostichopus japonicus (Holothurioidea, Aspidochirotida), Cell Tissue Res., 2009, vol. 336, pp. 41–58.

    Article  PubMed  Google Scholar 

  39. Dolmatov, I.Yu., Ginanova, T.T., and Frolova, L.T., Digestive system formation during the metamorphosis and definitive organogenesis in Apostichopus japonicus, Zoomorphology, 2017, vol. 136, pp. 191–204.

    Article  Google Scholar 

  40. Dolmatov, I.Yu., Kalacheva, N.V., Mekhova, E.S., and Frolova, L.T., Autotomy and regeneration of the visceral mass in feather stars, Zoomorphology, 2020, vol. 139, pp. 171–187.

    Article  Google Scholar 

  41. Eliseikina, M.G., Magarlamov, T.Y., and Dolmatov, I.Y., Stem cells of holothuroid coelomocytes, in Echinoderms: Durham, Boca Raton, Fla.: CRC, 2010, pp. 163–166.

    Google Scholar 

  42. Emson, R.H. and Wilkie, I.C., Fission and autotomy in echinoderms, Oceanogr. Mar. Biol. Annu. Rev., 1980, vol. 18, pp. 155–250.

    Google Scholar 

  43. Ereskovsky, A.V., Tokina, D.B., Saidov, D.M., et al., Transdifferentiation and mesenchymal-to-epithelial transition during regeneration in Demospongiae (Porifera), J. Exp. Zool., Part B, 2020, vol. 334, pp. 37–58.

    CAS  Google Scholar 

  44. Féral, J.P. and Massin, C., Digestive systems: Holothuroidea, in Echinoderm Nutrition, Rotterdam: Balkema, 1982, pp. 191–212.

  45. Frolova, L.T. and Dolmatov, I.Yu., Microscopic anatomy of the digestive system in normal and regenerating specimens of the brittlestar Amphipholis kochii, Biol. Bull., 2010, vol. 218, pp. 303–316.

    Article  PubMed  Google Scholar 

  46. Fujiwara, S. and Kawamura, K., Ascidian budding as a transdifferentiation-like system: multipotent epithelium is not undifferentiated, Dev., Growth Differ., 1992, vol. 34, pp. 463–472.

    Article  Google Scholar 

  47. Funayama, N., The cellular and molecular bases of the sponge stem cell systems underlying reproduction, homeostasis and regeneration, Int. J. Dev. Biol., 2018, vol. 62, pp. 513–525.

    Article  CAS  PubMed  Google Scholar 

  48. Gahn, F.J. and Baumiller, T.K., Evolutionary history of regeneration in crinoids (Echinodermata), Integr. Comp. Biol., 2010, vol. 50, pp. 514a–514m.

    Article  PubMed  Google Scholar 

  49. García-Arrarás, J.E. and Dolmatov, I.Yu., Echinoderms: potential model systems for studies on muscle regeneration, Curr. Pharm. Des., 2010, vol. 16, pp. 942–955.

  50. García-Arrarás, J.E., Estrada-Rodgers, L., Santiago, R., et al., Cellular mechanisms of intestine regeneration in the sea cucumber, Holothuria glaberrima Selenka (Holothuroidea: Echinodermata), J. Exp. Zool., 1998, vol. 281, pp. 288–304.

  51. García-Arrarás, J.E. and Greenberg, M.J., Visceral regeneration in holothurians, Microsc. Res. Tech., 2001, vol. 55, pp. 438–451.

  52. Gibson, A.W. and Burke, R.D., Gut regeneration by morphallaxis in the sea cucumber Leptosynapta clarki (Heding, 1928), Can. J. Zool., 1983, vol. 61, pp. 2720–2732.

    Article  Google Scholar 

  53. Grillo, M., Konstantinides, N., and Averof, M., Old questions, new models: unraveling complex organ regeneration with new experimental approaches, Curr. Opin. Genet. Dev., 2016, vol. 40, pp. 23–31.

    Article  CAS  PubMed  Google Scholar 

  54. Hu, Y., Schmitt-Engel, C., Schwirz, J., et al., A morphological novelty evolved by co-option of a reduced gene regulatory network and gene recruitment in a beetle, Proc. R. Soc. B, 2018, vol. 285, no. 1885. https://doi.org/10.1098/rspb.2018.1373

  55. Humphreys, T., Sasaki, A., Uenishi, G., et al., Regeneration in the Hemichordate Ptychodera flava, Zool. Sci., 2010, vol. 27, pp. 91–95.

    Article  Google Scholar 

  56. Hyman, L.H., The Invertebrates, vol. 4: Echinodermata: The Coelomate Bilateria, New York: McGraw-Hill, 1955.

    Google Scholar 

  57. Kalacheva, N.V. and Dolmatov, I.Y., Cellular source of digestive system regeneration in Lamprometra palmata and Aneissia bennetti, in Abstr. 10th Eur. Conf. Echinoderms, Moscow: Borissiak Paleontol. Inst., Ross. Akad. Nauk, 2019, p. 42.

  58. Kalacheva, N.V., Eliseikina, M.G., Frolova, L.T., and Dolmatov, I.Yu., Regeneration of the digestive system in the crinoid Himerometra robustipinna occurs by transdifferentiation of neurosecretory-like cells, PLoS One, 2017, vol. 12, art. ID e0182001. https://doi.org/10.1371/journal.pone.0182001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kamenev, Ya.O. and Dolmatov, I.Yu., Posterior regeneration following fission in the holothurian Cladolabes schmeltzii (Dendrochirotida: Holothuroidea), Microsc. Res. Tech., 2015, vol. 78, pp. 540–552.

    Article  PubMed  Google Scholar 

  60. Kamenev, Y.O. and Dolmatov, I.Y., Anterior regeneration after fission in the holothurian Cladolabes schmeltzii (Dendrochirotida: Holothuroidea), Microsc. Res. Tech., 2017, vol. 80, pp. 183–194.

    Article  PubMed  Google Scholar 

  61. Kamenev, Ya.O., Dolmatov, I.Yu., Frolova, L.T., and Khang, N.A., The morphology of the digestive tract and respiratory organs of the holothurian Cladolabes schmeltzii (Holothuroidea, Dendrochirotida), Tissue Cell, 2013, vol. 45, pp. 126–139.

    Article  PubMed  Google Scholar 

  62. Kawamura, K. and Fujiwara, S., Transdifferentiation of pigmented multipotent epithelium during morphallactic development of budding tunicates, Int. J. Dev. Biol., 1994, vol. 38, pp. 369–377.

    CAS  PubMed  Google Scholar 

  63. Kawamura, K., Sugino, Y., Sunanaga, T., and Fujiwara, S., Multipotent epithelial cells in the process of regeneration and asexual reproduction in colonial tunicates, Dev., Growth Differ., 2008, vol. 50, pp. 1–11.

    Article  CAS  Google Scholar 

  64. Kille, F.R., Regeneration in Thyone briareus Lesueur following induced autotomy, Biol. Bull., 1935, vol. 69, pp. 82–108.

    Article  Google Scholar 

  65. Kille, F.R., Regeneration in holothurians, Annu. Rep. Tortugas Lab., Carnegie Inst. Wash., 1936, vol. 35, pp. 85–86.

    Google Scholar 

  66. Kille, F.R., Regeneration of the reproductive system following binary fission in the sea-cucumber, Holothuria parvula (Selenka), Biol. Bull., 1942, vol. 83, pp. 55–66.

    Article  Google Scholar 

  67. Lai, A.G. and Aboobaker, A.A., EvoRegen in animals: Time to uncover deep conservation or convergence of adult stem cell evolution and regenerative processes, Dev. Biol., 2018, vol. 433, pp. 118–131.

    Article  CAS  PubMed  Google Scholar 

  68. Lawrence, J.M., Arm loss and regeneration in stellate echinoderms: An organismal view, in Echinoderms in a Changing World, Boca Raton, Fla.: CRC, 2013, pp. 53–66.

    Google Scholar 

  69. Leibson, N.L., Regeneration of digestive tube in holothurians Stichopus japonicus and Eupentacta fraudatrix, Monogr. Dev. Biol., 1992, vol. 23, pp. 51–61.

    CAS  PubMed  Google Scholar 

  70. Maden, M., The evolution of regeneration – where does that leave mammals?, Int. J. Dev. Biol., 2018, vol. 62, pp. 369–372.

    Article  CAS  PubMed  Google Scholar 

  71. Mashanov, V.S. and Dolmatov, I.Yu., Regeneration of digestive tract in the pentactulae of the far-eastern holothurian Eupentacta fraudatrix (Holothuroidea, Dendrochirota), Invertebr. Reprod. Dev., 2001, vol. 39, pp. 143–151.

    Article  Google Scholar 

  72. Mashanov, V.S., Dolmatov, I.Yu., and Heinzeller, T., Transdifferentiation in holothurian gut regeneration, Biol. Bull., 2005, vol. 209, pp. 184–193.

    Article  PubMed  Google Scholar 

  73. Mashanov, V.S. and García-Arrarás, J.E., Gut regeneration in holothurians: a snapshot of recent developments, Biol. Bull., 2011, vol. 221, pp. 93–109.

    Article  CAS  PubMed  Google Scholar 

  74. Miller, A.K., Kerr, A.M., Paulay, G., et al., Molecular phylogeny of extant Holothuroidea (Echinodermata), Mol. Phylogenet. Evol., 2017, vol. 111, pp. 110–131.

    Article  PubMed  Google Scholar 

  75. Mladenov, P.V., Bisgrove, B., Asotra, S., and Burke, R.D., Mechanisms of arm-tip regeneration in the sea star, Leptasterias hexactis, Roux’s Arch. Dev. Biol., 1989, vol. 198, pp. 19–28.

    Article  Google Scholar 

  76. Mokalled, M.H. and Poss, K.D., A regeneration toolkit, Dev. Cell., 2018, vol. 47, pp. 267–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Monticelli, F.S., Sull’ autotomia delle Cucumaria planci (Br.), Atti Accad. Naz. Lincei, Mem., Cl. Sci. Fis., Mat. Nat., Rend., Sez. 5, 1896, vol. 5, pp. 231–239.

  78. Mosher, C., Observation on evisceration and visceral regeneration in the sea cucumber, Actinopyga agassizi Selenka, Zoologica, 1956, vol. 41, pp. 17–26.

    CAS  Google Scholar 

  79. Mozzi, D., Dolmatov, I.Yu., Bonasoro, F., and Candia Carnevali, M.D., Visceral regeneration in the crinoid Antedon mediterranea: basic mechanisms, tissues and cells involved in gut regrowth, Centr. Eur. J. Biol., 2006, vol. 1, pp. 609–635.

    Google Scholar 

  80. Nace, A.G., The digestive system and lantern complex of Thyonella gemmata (Pourtales): structure and regeneration, PhD Dissertation, Florida State Univ., 1972, vol. 32B, p. 5539.

  81. Odintsova, N.A., Dolmatov, I.Yu., and Mashanov, V.S., Regenerating holothurian tissues as a source of cells for long-term cell cultures, Mar. Biol., 2005, vol. 146, pp. 915–921.

    Article  Google Scholar 

  82. de Quatrefages, A., Memoire sur la Synapte de Duvernoy (Synapta Duvernaea A. de Q.), Ann. Sci. Nat., Ser. 2, 1842, vol. 17, pp. 19–93.

    Google Scholar 

  83. Reddien, P.W., The cellular and molecular basis for planarian regeneration, Cell, 2018, vol. 175, pp. 327–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Reichenbach, N. and Holloway, S., Potential for asexual propagation of several commercially important species of tropical sea cucumbers (Echinodermata), J. World Aquacult. Soc., 1995, vol. 26, pp. 272–278.

    Article  Google Scholar 

  85. Reichenbach, N., Nishar, Y., and Saeed, A., Species and size-related trends in asexual propagation of commercially important species of tropical sea cucumbers (Holothuroidea), J. World Aquac. Soc., 1996, vol. 27, pp. 475–482.

    Article  Google Scholar 

  86. Ribeiro, R.P., Ponz-Segrelles, G., Bleidorn, C., and Aguado, M.T., Comparative transcriptomics in Syllidae (Annelida) indicates that posterior regeneration and regular growth are comparable, while anterior regeneration is a distinct process, BMC Genomics, 2019, vol. 20, art. ID 855. https://doi.org/10.1186/s12864-019-6223-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Scelzo, M., Alié, A., Pagnotta, S., et al., Novel budding mode in Polyandrocarpa zorritensis: a model for comparative studies on asexual development and whole body regeneration, EvoDevo, 2019, vol. 10, art. ID 7. https://doi.org/10.1186/s13227-019-0121-x

    Article  PubMed  PubMed Central  Google Scholar 

  88. Schück, F. and Perrimon, N., Molecular mechanisms of epithelial morphogenesis, Annu. Rev. Cell Dev. Biol., 2002, vol. 18, pp. 463–493.

  89. Sebastião, M.J., Serra, M., Pereira, R., et al., Human cardiac progenitor cell activation and regeneration mechanisms: exploring a novel myocardial ischemia/reperfusion in vitro model, Stem Cell Res. Ther., 2019, vol. 10, art. ID 77. https://doi.org/10.1186/s13287-019-1174-4

  90. Shubin, N., Tabin, C., and Carroll, S., Deep homology and the origins of evolutionary novelty, Nature, 2009, vol. 457, pp. 818–823.

    Article  CAS  PubMed  Google Scholar 

  91. Sikes, J.M. and Newmark, P.A., Restoration of anterior regeneration in a planarian with limited regenerative ability, Nature, 2013, vol. 500, pp. 77–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Smith, G.N., Jr., Regeneration in the sea cucumber Leptosynapta. I. The process of regeneration, J. Exp. Zool., 1971, vol. 177, pp. 319–330.

    Article  PubMed  Google Scholar 

  93. Smith, G.N., Jr., Regeneration in the sea cucumber Leptosynapta. II. The regenerative capacity, J. Exp. Zool., 1971, vol. 177, pp. 331–342.

    Article  PubMed  Google Scholar 

  94. Somorjai, I.M.L., Somorjai, R.L., Garcia-Fernàndez, J., and Escrivà, H., Vertebrate-like regeneration in the invertebrate chordate amphioxus, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, pp. 517–522.

    Article  CAS  PubMed  Google Scholar 

  95. Torelle, E., Regeneration in holothuria, Zool. Anz., 1910, vol. 35, pp. 15–22.

    Google Scholar 

  96. Tracey, D.J., Evisceration and regeneration in Thyone okeni (Bell 1884), Proc. Linn. Soc. N. S. W., 1972, vol. 97, pp. 72–81.

    Google Scholar 

  97. Vogt, G., Hidden treasures in stem cells of indeterminately growing bilaterian invertebrates, Stem Cell Rev. Rep., 2012, vol. 8, pp. 305–317.

    Article  PubMed  Google Scholar 

  98. West, M.D., Sternberg, H., Labat, I., et al., Toward a unified theory of aging and regeneration, Regener. Med., 2019, vol. 14, pp. 867–886.

    Article  CAS  Google Scholar 

  99. Wilkie, I.C., Autotomy as a prelude to regeneration in echinoderms, Microsc. Res. Tech., 2001, vol. 55, pp. 369–396.

    Article  CAS  PubMed  Google Scholar 

  100. Boyko, A.V., Girich, A.S., Tkacheva, E.S., and Dolmatov, I.Yu., The Eupentacta fraudatrix transcriptome provides insights into regulation of cell transdifferentiation, Sci. Rep., 2020, vol. 10, no. 1, art. ID 1522. https://doi.org/10.1038/s41598-020-58470-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 20-04-00574).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Dolmatov.

Ethics declarations

Conflict of interests. The author declares that he has no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by E. Shvetsov

An invited paper published in commemoration of the 50th anniversary of the Institute of Marine Biology (currently, the Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolmatov, I.Y. Variability of Regeneration Mechanisms in Echinoderms. Russ J Mar Biol 46, 391–404 (2020). https://doi.org/10.1134/S106307402006005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106307402006005X

Keywords:

Navigation