Skip to main content
Log in

The Sperm Ultrastructure and Some Reproductive Characteristics of the Chemosymbiotic Bivalve Calyptogena pacifica Dall, 1891 (Vesicomyidae: Pliocardiinae)

  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

Pliocardiines (Bivalvia: Vesicomyidae: Pliocardiinae) are a chemosymbiotrophic group of bivalve mollusks that are obligate for reducing environments. These mollusks house endosymbiotic thioautotrophic bacteria in their gills, which provide nutrition for the host. The ultrastructure of spermatozoa and the state of the gonads in the pliocardiine bivalve Calyptogena pacifica in June 2016 were studied. Material was collected in the Bering Sea on the slopes of the Piip’s Volcano at a depth of 466 m. The condition of the gonads indicated a pre-spawning state. Active processes of spermatogenesis and oogenesis were noted in the gonads. The mature spermatozoon has an elongated bullet-shaped head with an average length of 4 ± 0.2 μm from the tip of the acrosome to the base of the mid-piece. The mid-piece was formed by a complex of four spherical mitochondria with a diameter of approximately 0.7 μm. An electron dense material of a lipid nature was observed in the distal region of the mid-piece of the sperm. C.pacifica mature eggs are approximately 200 μm in diameter. The results are discussed in the context of the available data on the morphology of pliocardiine gametes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Bakeeva, L.E. and Chentsov, Yu.S., Mitochondrial reticulum: structure and some functional properties, Itogi Nauki Tekh., Ser.: Obshch. Probl. Biol., 1989, vol. 9.

    Google Scholar 

  2. Bakeeva, L.E., Chentsov, Yu.S., and Skulachev, V.P., Intermitochondrial contacts of cardiomyocytes, Tsitologiya, 1982, vol. 245, pp. 161–166.

    Google Scholar 

  3. Danilin, D.D., Bivalves as potential indicators of areas of hydrothermal activity, in Materialy konferentsii, posvyashchennoi Dnyu vulkanologa (Proc. Conf. Dedicated to the Volcanologist’s Day), Petropavlovsk-Kamchatsky: Inst. Vulkanol. Seismol., Dal’nevost. Otd. Ross. Akad. Nauk, 2013, pp. 291–294.

  4. Drozdov, A.L. and Vinnikova, V.V., Morphology of gametes in sea urchins from Peter the Great Bay, Sea of Japan, Russ. J. Dev. Biol., 2010, vol. 41, no. 1, pp. 37–45.

    Article  Google Scholar 

  5. Drozdov, A.L. and Ivankov, V.N., Morfologiya gamet zhivotnykh (Morphology of Gametes in Animals), Moscow: Kruglyi God, 2000.

  6. Drozdov, A.L. and Kasyanov, V.L., Size and shape of gametes in marine bivalve mollusks, Biol. Morya, 1985, no. 4, pp. 33–40.

  7. Mashansky, V.F., Ozirskaya, E.V., Tumanova, N.L., and Drozdov, A.L., Intermitochondrial contacts in the telencephalon neurons of the lizard Ophisaurus apodus, Tsitologiya, 1984, vol. 26, no. 6, pp. 740–743.

    Google Scholar 

  8. Pashchenko, S.V. and Drozdov, A.L., Ultrastructure of gametes and acrosomal reaction of sperm in the bivalve Glycymeris yessoensis, Tsitologiya, 1991, vol. 33, no. 7, pp. 20–24.

    Google Scholar 

  9. Sagalevich, A.M., Torokhov, P.V., Matveenkov, V.V., et al., Hydrothermal manifestations at Piip’s submarine volcano, Bering Sea, Izv. Ross. Akad. Nauk, Ser. Geol., 1992, no. 9, pp. 104–114.

  10. Audzijonyte, A., Krylova, E.M., Sahling, H., and Vrijenhoek, R.C., Molecular taxonomy reveals broad trans-oceanic distributions and high species diversity of deep-sea clams (Bivalvia: Vesicomyidae: Pliocardiinae) in chemosynthetic environments, Syst. Biodiversity, 2012, vol. 10, pp. 403–415.

    Article  Google Scholar 

  11. Barry, J.P. and Kochevar, R.E., A tale of two clams: differing chemosynthetic life styles among vesicomyids in Monterey Bay cold seeps, Cah. Biol. Mar., 1998, vol. 39, pp. 329–331.

    Google Scholar 

  12. Beninger, P. and Le Pennec, M., Reproductive characteristics of a primitive bivalve from a deep-sea reducing environment: giant gametes and their significance in Acharax alinae (Cryptodonta: Solemyidae), Mar. Ecol.: Prog. Ser., 1997, vol. 157, pp. 195–206.

    Article  Google Scholar 

  13. Berg, C.J., Reproductive strategies of mollusks from abyssal hydrothermal vent communities, Bull. Biol. Soc. Wash., 1985, vol. 6, pp. 185–197.

    Google Scholar 

  14. Bieler, R., Mikkelsen, P.M., Collins, T.M., et al., Investigating the Bivalve Tree of Life – an exemplar-based approach combining molecular and novel morphological characters, Invertebr. Syst., 2014, vol. 28, pp. 32–115.

    Article  Google Scholar 

  15. Boss, K.J. and Turner, R.D., The giant white clam from the Galapagos Rift, Calyptogena magnifica species novum, Malacologia, 1980, vol. 20, pp. 161–194.

    Google Scholar 

  16. Coan, E.V., Scott, P.V., and Bernard, F.R., Bivalve Seashells of Western North America: Marine Bivalve Mollusks from Arctic Alaska to Baja California, Santa Barbara Museum of Natural History Monographs, vol. 2: Studies in Biodiversity, Santa Barbara, Calif.: Santa Barbara Mus. Nat. Hist., 2000.

  17. Decker, C., Olu, K., Cunha, R.L., and Arnaud-Haond, S., Phylogeny and diversification patterns among vesicomyid bivalves, PLoS One, 2012, vol. 7, art. ID e33359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Endow, K. and Ohta, S., Occurrence of bacteria in the primary oocytes of vesicomyid clam Calyptogena soyoae, Mar. Ecol.: Prog. Ser., 1990, vol. 64, pp. 309–311.

    Article  Google Scholar 

  19. Fiala-Medioni, A. and Le Pennec, M., Adaptive features of the bivalve molluscs associated with fluid venting in the subduction zones off Japan, Palaeogeogr., Palaeoclimatol., Palaeoecol., 1989, vol. 71, pp. 161–167.

    Article  Google Scholar 

  20. Franzén, Å., Comparative morphological investigations into the spermiogenesis among Mollusca, Zool. Bidr. Uppsala, 1955, vol. 30, pp. 399–456.

  21. Franzén, Å., On spermiogenesis, morphology of the spermatozoon, and biology of fertilization among invertebrates, Zool. Bidr. Uppsala, 1956, vol. 31, pp. 355–482.

  22. Franzé, Å., Ultrastructural studies of spermatozoa in three bivalve species with notes on evolution of elongated sperm nucleus in primitive spermatozoa, Gamete Res., 1983, vol. 7, pp. 199–214.

  23. Fujiwara, Y., Tsukahara, J., Hashimoto, J., and Fujikura, K., In situ spawning of a deep-sea vesicomyid clam: evidence for an environmental cue, Deep Sea Res., Part I, 1998, vol. 45, pp. 1881–1889.

    Article  Google Scholar 

  24. Goffredi, S.K. and Barry, J.P., Species-specific variation in sulfide physiology between closely related Vesicomyid clams, Mar. Ecol.: Prog. Ser., 2002, vol. 225, pp. 227–238.

    Article  CAS  Google Scholar 

  25. Goffredi, S.K., Hurtado, L.A., Hallam, S., and Vrijenhoek, R.C., Evolutionary relationships of deep-sea vent and cold seep clams (Mollusca: Vesicomyidae) of the “pacifica/lepta” species complex, Mar. Biol., 2003, vol. 142, pp. 311–320.

    Article  Google Scholar 

  26. Healy, J.M., Molluscan sperm ultrastructure: correlation with taxonomic units within the Gastropoda, Cephalopoda and Bivalvia, in Origin and Evolutionary Radiation of the Mollusca, Oxford: Oxford Univ. Press, 1996, pp. 99–113.

    Google Scholar 

  27. Healy, J.M., Keys, J.L., and Daddow, L.Y.M., Comparative sperm ultrastructure in pteriomorphian bivalves with special reference to phylogenetic and taxonomic implications, Geol. Soc. Spec. Publ., 2000, vol. 177, pp. 169–190.

    Article  Google Scholar 

  28. Healy, J.M., Mikkelsen, P.M., and Bieler, R., Sperm ultrastructure in Hemidonax pictus (Hemidonacidae, Bivalvia, Mollusca): comparison with other heterodonts, especially Cardiidae, Donacidae and Crassatelloidea, Zool. J. Linn. Soc., 2008, vol. 153, pp. 325–347.

    Article  Google Scholar 

  29. Heyl, T.P., Gilhooly, W.P., Chambers, R.M., et al., Characteristics of vesicomyid clams and their environment at the Blake Ridge cold seep, South Carolina, USA, Mar. Ecol.: Prog. Ser., 2007, vol. 339, pp. 169–184.

    Article  CAS  Google Scholar 

  30. Ikuta, T., Igawa, K., Tame, A., et al., Surfing the vegetal pole in a small population: extracellular vertical transmission of an ‘intracellular’ deep-sea clam symbiont, R. Soc. Open Sci., 2016, vol. 3, art. ID 160130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Johnson, S.B., Krylova, E.M., Audzijonyte, A., et al., Phylogeny and origins of chemosynthetic vesicomyid clams, Syst. Biodiversity, 2017, vol. 15, no. 4, pp. 346–360.

    Article  Google Scholar 

  32. Kafanov, A.I. and Drozdov, A.L., Comparative sperm morphology and phylogenetic classification of recent Mytiloidea (Bivalvia), Malacologia, 1998, vol. 39, pp. 129–139.

    Google Scholar 

  33. Krylova, E.M. and Janssen, R., Vesicomyidae from Edison Seamount (South Western Pacific: Papua New Guinea: New Ireland fore-arc basin) (Bivalvia: Glossoidea), Arch. Molluskenkd., 2006, vol. 135, pp. 233–263.

    Google Scholar 

  34. Krylova, E.M., Kolpakov, E.V., Sharina, S.N., et al., Distribution patterns of chemosymbiotic bivalves of the subfamily Pliocardiinae (Bivalvia: Vesicomyidae) from the North-West Pacific, in 15th Int. Deep-Sea Biol. Symp., September 9–14, 2018, Monterey, Calif.: Monterey Bay Aquarium Res. Inst., 2018, pp. 32–33.

  35. Krylova, E.M. and Sahling, H., Recent bivalve molluscs of the genus Calyptogena (Vesicomyidae), J. Molluscan Stud., 2006, vol. 72, pp. 359–395.

    Article  Google Scholar 

  36. Krylova, E.M. and Sahling, H., Vesicomyidae (Bivalvia): current taxonomy and distribution, PLoS One, 2010, vol. 5, no. 4, art. ID e9957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Krylova, E.M., Sahling, H., and Janssen, R., Abyssogena: a new genus of the family Vesicomyidae (Bivalvia) from deep-water vents and seeps, J. Molluscan Stud., 2010, vol. 76, pp. 107–132.

    Article  Google Scholar 

  38. Krylova, E.M., Sellanes, J., Valdés, F., and D’Elía, G., Austrogena: a new genus of chemosymbiotic bivalves (Bivalvia; Vesicomyidae; Pliocardiinae) from the oxygen minimum zone off central Chile described through morphological and molecular analyses, Syst. Biodiversity, 2014, vol. 12, pp. 225–246.

    Article  Google Scholar 

  39. LaBella, A.L., Van Dover, C.L., Jollivet, D., and Cunningham, C.W., Gene flow between Atlantic and Pacific Ocean basins in three lineages of deep-sea clams (Bivalvia: Vesicomyidae: Pliocardiinae) and subsequent limited gene flow within the Atlantic, Deep Sea Res., Part II, 2016, vol. 137, pp. 307–317.

    Article  CAS  Google Scholar 

  40. Le Pennec, M. and Beninger, P.G., Reproductive characteristics and strategies of reducing-system bivalves, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2000, vol. 126, pp. 1–16.

    Article  CAS  Google Scholar 

  41. Lisin, E.S., Hannan, E.E., Kochevar, R.E., et al., Temporal variation in gametogenic cycles of vesicomyid clams, Invertebr. Reprod. Dev., 1997, vol. 31, pp. 307–318.

    Article  Google Scholar 

  42. Ockelmann, K.W., Developmental types in marine bivalves and their distribution along the Atlantic coast of Europe, in Proc. 1st Eur. Malacol. Congr., London, 1962, Cox, L.R. and Peake, J.F., Eds., London: Conchological Society of Great Britain and Ireland and the Malacological Society of London, 1965, pp. 25–35.

  43. Parra, M., Sellanes, J., Dupré, E., and Krylova, E., Reproductive characteristics of Calyptogena gallardoi (Bivalvia: Vesicomyidae) from a methane seep area off Concepción, Chile, J. Mar. Biol. Assoc. U. K., 2009, vol. 89, no. 1, pp. 161–169.

    Article  Google Scholar 

  44. Peek, A.S., Gustafson, R.G., Lutz, R.A., and Vrijenhoek, R.C., Evolutionary relationships of deep-sea hydrothermal vent and cold-water seep clams (Bivalvia: Vesicomyidae): results from mitochondrial cytochrome oxidase subunit I, Mar. Biol., 1997, vol. 130, pp. 151–161.

    Article  CAS  Google Scholar 

  45. Popham, J.D., Comparative spermatozoon morphology and bivalve phylogeny, Malacol. Rev., 1979, vol. 12, pp. 1–20.

    Google Scholar 

  46. Skulachev, V.P., Mitochondrial filaments and clusters as intracellular power transmitting cables, Trends Biochem. Sci., 2001, vol. 26, no. 1, pp. 23–29.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the expedition leader V.V. Ivin, master V.B. Ptushkin, the crew of the R/V Akademik Lavrentyev, as well as to V.A. Denisov and the crew of technicians of the ROV Comanche 18 for their expert help. We are deeply grateful to Yoshihiro Fujiwara (JAMSTEC, Japan), who sent us TEM images of Phreagena soyoae spermatozoa.

Funding

This research was performed within the framework of the state assignment project (no. 0149-2019-0009). E.M. Krylova (comparative analysis of reproductive characteristics of pliocardiines) and S.V. Galkin (collection of material) were supported by the Russian Foundation for Basic Research (project no. 18-05-60228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Drozdov.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by T. Koznova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drozdov, A.L., Krylova, E.M., Kudryavtsev, A.A. et al. The Sperm Ultrastructure and Some Reproductive Characteristics of the Chemosymbiotic Bivalve Calyptogena pacifica Dall, 1891 (Vesicomyidae: Pliocardiinae). Russ J Mar Biol 45, 292–301 (2019). https://doi.org/10.1134/S1063074019040047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074019040047

Keywords:

Navigation