Skip to main content
Log in

Ultrastructural Changes in Marine Microalgae from Different Taxonomic Groups during Batch Cultivation

  • ORIGINAL PAPERS
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

A comparative ultrastructural study was performed on microalgae from different taxonomic groups (Dinoflagellata, Haptophyta, Rhodophyta, and Ochrophyta) in batch culture. Intra- and interspecific differences in the cell structure in exponential (7 days), stationary (30 days) and decline phases (60 days) are described. General and specific changes in the microalgal cell morphology (the structure of the photosynthetic apparatus, cell wall, and lipid bodies) were found under stress conditions during long-term cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Voskoboinikov, G.M., Morpho-functional changes in the unicellular alga Euglena gracilis Klebs during long-term cultivation in darkness on mineral medium, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Leningrad, 1980.

  2. Zhukova, N.V., Orlova, T.Yu., and Aizdaicher, N.A., Fatty acid composition as an indicator of the physiological state of the diatom Pseudonitzschia pungens in natural assemblages and in culture, Russ. J. Mar. Biol., 1998, vol. 24, no. 1, pp. 42−46.

    Google Scholar 

  3. Konovalova, G.V., Seasonal characteristics of phytoplankton in Amur Bay, Sea of Japan, Okeanologiya, 1972, vol. 12, no. 1, pp. 123−128.

    Google Scholar 

  4. Konovalova, G.V., Structure of planktonic phytocenosis of Vostok Bay, Biol. Morya (Vladivostok), 1984, no. 1, pp. 13−23.

  5. Konovalova, G.V., Dinoflagellyaty (Dinophyta) dal’nevostochnykh morei Rossii i sopredel’nykh akvatorii Tikhogo okeana (Dinoflagellates (Dinophyta) of the Far Eastern Seas of Russia and Adjacent Areas of the Pacific Ocean), Vladivostok: Dal’nauka, 1998.

  6. Orlova, T.Yu. and Aizdaicher, N.A., Development in culture of the diatom Chaetoceros salsugineus from the Sea of Japan, Russ. J. Mar. Biol., 2000, vol. 26, no. 1, pp. 8–11.

    Article  Google Scholar 

  7. Orlova, T.Yu., Aizdaicher, N.A., Stonik, I.V., Schevchenko, O.G., and Pogosyan, S.I., The morphology, development, and state of the photosynthetic apparatus of the diatom Attheya ussurensis Stonik, Orlova et Crawford, 2006 (Bacillariophyta) in long-term culture, Russ. J. Mar. Biol., 2011, vol. 37, no. 6, pp. 421–429.

    Article  CAS  Google Scholar 

  8. Orlova, T.Yu., Aizdaicher, N.A., and Stonik, I.V., Laboratornoe kul’tivirovanie morskikh mikrovodoroslei, vklyuchaya produtsentov fitotoksinov: nauchno-metodicheskoe posobie (Laboratory Cultivation of Marine Microalgae, Including Phytotoxin Producers: Scientific and Methodical Manual), Vladivostok: Dal’nauka. 2011.

  9. Selina, M.S., Phytoplankton of Vostok Bay, Sea of Japan, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Vladivostok, 1998.

  10. Solovchenko, A.E., Physiological role of neutral lipid accumulation in eukaryotic microalgae under stresses, Russ. J. Plant Physiol., 2012, vol. 59, no. 2, pp. 167–176.

    Article  CAS  Google Scholar 

  11. Basova, M.M., Fatty acid composition of lipids in microalgae, Int. J. Algae, 2005, vol. 7, pp. 33–57.

    Article  Google Scholar 

  12. Boussiba, S., Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response, Physiol. Plant., 2000, vol. 108, no. 2, pp. 111–117.

    Article  CAS  Google Scholar 

  13. Bravo, I., Vila, M., Casabianca, S., et al., Life cycle stages of the benthic palytoxin-producing dinoflagellate Ostreopsis cf. ovata (Dinophyceae), Harmful Algae, 2012, vol. 18, pp. 24–34.

    Article  CAS  Google Scholar 

  14. Chepurnov, V.A. and Mann, D.G., Auxosporulation of Licmophora communis (Bacillariophyta) and a review of mating systems and sexual reproduction in araphid pennate diatoms, Phycol. Res., 2004, vol. 52, pp. 1–12.

    Article  Google Scholar 

  15. Connell, L. and Cattolico, R.A., Fragile algae: axenic culture of field-collected samples of Heterosigma carterae, Mar. Biol., 1996, vol. 125, pp. 421–426.

    Article  Google Scholar 

  16. Doucette, G.J., Cembella, A.D., and Boyer, L.G., Cyst formation in the red tide dinoflagellate Alexandrium tamarense (Dinophyceae): effects of iron stress, J. Phycol., 1989, vol. 25, pp. 721–731.

    Article  Google Scholar 

  17. Fogg, G.E., Algal Culture and Phytoplankton Ecology, Madison: Univ. of Wisconsin Press, 1966.

    Google Scholar 

  18. Gantt, E. and Conti, S.F., Granules associated with the chloroplast lamellae of Porphyridium cruentum, J. Cell Biol., 1966, vol. 39, pp. 423–434.

    Article  Google Scholar 

  19. Gorelova, O., Baulina, O., Solovchenko, A., et al., Coordinated rearrangements of assimilatory and storage cell compartments in a nitrogen-starving symbiotic chlorophyte cultivated under high light, Arch. Microbiol., 2015, vol. 197, no. 2, pp. 181–195.

    Article  CAS  PubMed  Google Scholar 

  20. Guillard, R.R.L. and Ryther, J.H., Studies of marine planktonic diatoms. 1. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran, Can. J. Microbiol., 1962, vol. 8, no. 2, pp. 229–239.

    Article  CAS  PubMed  Google Scholar 

  21. Hagen, C., Siegmund, S., and Braune, W., Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanaspore formation, Eur. J. Phycol., 2002, vol. 37, pp. 217–226.

    Article  Google Scholar 

  22. Holzinger, A. and Karsten, U., Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms, Front. Plant Sci., 2013, vol. 4, p. 327. https://doi.org/10.3389/fpls.2013.00327

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hu, Q., Sommerfeld, M., Jarvis, E., et al., Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances, Plant J., 2008, vol. 54, pp. 621–639.

    Article  CAS  PubMed  Google Scholar 

  24. Kalinina, V., Matantseva, O., Berdieva, M., and Skarlato, S., Trophic strategies in dinoflagellates: how nutrients pass through the amphiesma, Protistology, 2018, vol. 12, pp. 3–11.

    Article  Google Scholar 

  25. Kuwata, A., Hama, T., and Takahashi, M., Ecophysiological characterization of two life forms, resting spores and resting cells, of a marine planktonic diatom, Chaetoceros pseudocurvisetus, formed under nutrient depletion, Mar. Ecol.: Prog. Ser., 1993, vol. 102, pp. 245–255.

    Article  Google Scholar 

  26. Kwok, A.C.M. and Wong, J.T.Y., Cellulose synthesis is coupled to cell cycle progression at G1 in the dinoflagellate Crypthecodinium cohnii, Plant Physiol., 2003, vol. 131, pp. 1681–1691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lakeman, M.B., von Dassow, P., and Cattolico, R.A., The strain concept in phytoplankton ecology, Harmful Algae, 2009, vol. 8, pp. 746–758.

    Article  Google Scholar 

  28. Liu, C. and Lin, L., Ultrastructural study and lipid formation of Isochrysis sp. CCMP1324, Bot. Bull. Acad. Sin., 2001, vol. 42, pp. 207–214.

    CAS  Google Scholar 

  29. Luft, J.H.J., Improvements in epoxy resin embedding methods, J. Biophys. Biochem. Cytol., 1961, vol. 9, pp. 409–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Montresor, M. and Lewis, J.M., Phases, stages and shifts in the life cycles of marine phytoplankton, in Algal Cultures, Analogues of Blooms and Applications, Enfield, USA: Science Publishers, 2005, pp. 91–129.

    Google Scholar 

  31. Murphy, L.S., Biochemical taxonomy of marine phytoplankton by electrophoresis of enzymes. II. Loss of heterozygosity in clonal cultures of the centric diatoms Skeletonema costatum and Thalassiosira pseudonana, J. Phycol., 1978, vol. 14, pp. 247–250.

    Article  Google Scholar 

  32. Paasche, E., A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions, Phycologia, 2001, vol. 40, pp. 503−529.

    Article  Google Scholar 

  33. Pezzolesi, L., Guerrini, F., Ciminiello, P., et al., Influence of temperature and salinity on Ostreopsis cf. ovata growth and evaluation of toxin content through HR LC-MS and biological assays, Water Res., 2012, vol. 46, pp. 82–92.

    Article  CAS  PubMed  Google Scholar 

  34. Pozdnyakov, I. and Skarlato, S., Dinoflagellate amphiesma at different stages of the life cycle, Protistology, 2012, vol. 7, pp. 108–115.

    Google Scholar 

  35. Přbyl, P., Cepák, V., and Zachleder, V., Production of lipids and formation and mobilization of lipid bodies in Chlorella vulgaris, J. Appl. Phycol., 2013, vol. 25, pp. 545–553.

  36. Reynolds, E., The use of lead citrate at high pH as an electron-opaque stain in electron microscopy, J. Cell Biol., 1963, vol. 17, pp. 208–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. von Dassow, P., Chepurnov, V.A., and Armbrust, E.V., Relationships between growth rate, cell size, and induction of spermatogenesis in the centric diatom Thalassiosira weissflogii (Bacillariophyta), J. Phycol., 2006, vol. 42, pp. 887–899.

    Article  Google Scholar 

  38. Voronova, E.N., Konyukhov, I.V., Kazimirko, Yu.V., et al., Changes in the condition of photosynthetic apparatus of a diatom alga Thalassiosira weisflogii during photoadaptation and photodamage, Russ. J. Plant Physiol., 2009, vol. 56, no. 6, pp. 753–760.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yu. Orlova.

Additional information

Translated by T. Koznova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlova, T.Y., Sabutskaya, M.A. & Markina, Z.V. Ultrastructural Changes in Marine Microalgae from Different Taxonomic Groups during Batch Cultivation. Russ J Mar Biol 45, 202–210 (2019). https://doi.org/10.1134/S1063074019030106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074019030106

Keywords:

Navigation