Skip to main content
Log in

Microsatellite Markers and Genetic Diversity of Four Scleractinian Corals

  • ORIGINAL PAPERS
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

Eighteen microsatellite sequences were isolated from Platygyra acuta through magnetic bead hybridization enrichment method, and the site primers were used to analyze the genetic diversity of P. acuta, Platygyra daedalea, Favites flexuosa, and Porites lutea. Results showed that among the 18 microsatellites of P. acuta, 12 (66.67%) were perfect, 3 (16.67%) were imperfect, and the remaining 3 (16.67%) were compound type. P. acuta, P. daedalea, F. flexuosa, and P. lutea were detected to have 39, 28, 40, and 21 alleles using 12 pairs of common primers. The genetic diversity analysis of the four scleractinian populations indicated that the average polymorphism information contents were 0.5168, 0.4250, 0.5286, and 0.3409; the average expected heterozygosity values were 0.6667, 0.6042, 0.5972, and 0.4702; and the average effective numbers of allele were 2.7112, 2.5376, 2.6860, and 2.0081, respectively. All results indicated that the P. acuta and the F. flexuosa populations had high levels of genetic diversities, whereas P. daedalea and P. lutea had moderate levels of genetic diversities. In addition, environment stresses and the modes of reproduction of corals may be the main reasons for the deviation from Hardy-Weinberg equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Botstein, D., White, R.L., Skolnick, M., et al., Construction of a genetic linkage map in man using restriction fragment length polymorphisms, Am. J. Hum. Genet., 1980, vol. 32, pp. 314–331.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Barker, J.S.F., A global protocol for determining genetic distances among domestic livestock breeds, Proc. Int. Comm. World Congr. Genet. Applied Livestock Prod., Gueph, 1994, vol. 5, pp. 501–508.

  3. Crnokrak, P. and Roff, D.A., Inbreeding depression in the wild, Heredity, 1999, vol. 83, pp. 260–270.

    Article  PubMed  Google Scholar 

  4. Carlon, D.B. and Lippé, C., Fifteen new microsatellite markers for the reef coral, Favia fragum, and a new Symbiodinium, microsatellite, Mol. Ecol. Resour., 2008, vol. 8, pp. 870–873.

    Article  CAS  PubMed  Google Scholar 

  5. Concepcion, G.T., Polato, N.R., Baums, I.B. et al., Development of microsatellite markers from four Hawaiian corals: Acropora cytherea, Fungia scutaria, Montipora capitata, and Porites lobata, Conserv. Genet. Resour., 2010, vol. 2, pp. 11–15.

    Article  Google Scholar 

  6. Fu, U.X.M., Wang, C.Y., Shao, C.L. et al., Investigation on the status of coral reef resources and medicinal research in China. I. Coral reef resources and ecological functions, J. Ocean Univ. China, 2009, vol. 39, pp. 676–684.

    Google Scholar 

  7. Hoegh, G.O., Climate change, coral bleaching and the future of the world’s coral reefs, Mar. Freshwater Res., 1999, vol. 50, pp. 839–866.

    Article  Google Scholar 

  8. Hoegh, G.O., Mumby, P.J., Hooten, A.J., et al., Coral reefs under rapid climate change and ocean acidification, Science, 2007, vol. 318, pp. 1737–1743.

    Article  CAS  Google Scholar 

  9. Huang, Z.G., Species and Distribution of Marine Life in China: An Updated Edition, Beijing: Ocean Press, 2008.

    Google Scholar 

  10. Heron, S.F., Maynard, J.A., Hooidonk, R.V., et al., Warming trends and bleaching stress of the World’s Coral Reefs 1985–2012, Sci. Rep., 2016, vol. 6, pp. 1–14.

    Article  CAS  Google Scholar 

  11. Lu, Y.L., Yuan, J.J., Li, Q.F., et al., Impacts of land-based human activities on coastal and offshore marine ecosystems, Acta Ecol. Sin., 2016, vol. 36, pp. 1183–1191.

    Article  Google Scholar 

  12. Mundy, C.N. and Babcock, R.C., Role of light intensity and spectral quality in coral settlement: Implications for depth-dependent settlement?, J. Exp. Mar. Biol. Ecol., 1998, vol. 223, pp. 235–255.

    Article  Google Scholar 

  13. Nei, M., Genetic distance between populations, Am. Nat., 1972, vol. 106, pp. 283–292.

    Article  Google Scholar 

  14. Nei, M., Estimation of average heterozygosity and genetic distance from a small number of individuals, Genetics, 1978, vol. 89, pp. 583–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Reaka-Kudla, M.L., The global biodiversity of coral reefs: a comparison with rain forests, in Biodiversity II: Understanding and Protecting Our Biological Resources, Reaka-Kudla, M., Wilson, D.E., and Wilson, E.O., Eds., Washington, D.C.: Joseph Henry Press, 1997, pp. 83–108.

    Google Scholar 

  16. Smith, S.V., Coral-reef area and the contribution of reefs to processes and resources of the world’s oceans, Nature, 1978, vol. 273, pp. 225–226.

    Article  Google Scholar 

  17. Szmant, A.M., Sexual reproduction by the Caribbean reef corals Montastrea annularis and M. cavernosa, Mar. Ecol.: Prog. Ser., 1991, vol. 74, pp. 13–25.

    Article  Google Scholar 

  18. Shen, H. and Liu, D., Summary of genetic diversity, J. Biol., 2001, vol. 18, pp. 5–7.

    Google Scholar 

  19. Stark, A.E., A clarification of the Hardy-Weinberg law, Genetics, 2006, vol. 174, pp. 1695–1697.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Strader, M.E., Davies, S.W., and Matz, M.V., Differential responses of coral larvae to the colour of ambient light guide them to suitable settlement microhabitat. R. Soc. Open Sci., 2015, vol. 2. doi 10.1098/rsos.150358

  21. Pan, W.J., Qian, G.M., Yu, K.F., et al., Study on variation characteristics of SST observed in the past 40 years in the coastal region of south China, J. Trop. Meteorol., 2007, vol. 13, pp. 177–180.

    Google Scholar 

  22. Tang, C.L., Study on Variation Characteristics of SST Observed in the Past 50 years in the Coastal Region of South China under Globosity Climate Warming, Qingdao: Ocean Univ. China, 2008.

    Google Scholar 

  23. Weber, J.L., Informativeness of human (dC-dA)n (dG-dT)n Polymorphisms, Genomics, 1990, vol. 7, pp. 524–530.

    Article  CAS  PubMed  Google Scholar 

  24. Wang, W.H., Yu, K.F., and Wang, Y.H., A review on the research of coral reefs in the Weizhou Island, Beibu Gulf, Tropical Geogr., 2016, vol. 36, pp. 72–79.

    Google Scholar 

  25. Xu, Z., Primavera, J.H., de la Pena, L.D., et al., Genetic diversity of wild and cultured Black Tiger Shrimp (Penaeus monodon) in the Philippines using microsatellites, Aquaculture, 2001, vol. 199, pp. 13–40.

    Article  CAS  Google Scholar 

  26. Zane, L., Bargelloni, L., and Patarnello, T., Strategies for microsatellite isolation: a review, Mol. Ecol., 2002, vol. 11, pp. 1–16.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao, M.X., Yu, K.F., and Zhang, Q.M., Review on coral reefs biodiversity and ecological function, Acta Ecol., Sin., 2006, vol. 26, pp. 186–194.

    CAS  Google Scholar 

  28. Zhao, H.T., Wang, L.R., and Yuan, J.Y., Sustainable development of the coral reefs in the South China Sea Islands, Tropical Geogr., 2016, vol. 36, pp. 55–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Li.

Additional information

The article is published in the original.

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jigui, Y., Xinlong, Y., Li, L. et al. Microsatellite Markers and Genetic Diversity of Four Scleractinian Corals. Russ J Mar Biol 44, 484–490 (2018). https://doi.org/10.1134/S1063074018060068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074018060068

Keywords:

Navigation