Skip to main content
Log in

The enzymes of a marine bacterial isolate from the brown alga Sargassum polycystum agardh, 1821, that catalyzes the transformation of polyanionic oligo-and polysaccharides

  • Microbiology
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

A search for enzymes involved in the degradation of polyanionic polysaccharides (fucoidans and alginic acid) was conducted among bacterial epiphytes of the brown alga Sargassum polycystum that grows in the territorial waters of the Socialist Republic of Vietnam. Two resistant bacterial strains, F10 and F14, have been isolated from the algal microflora that degrade the thallus of the alga under laboratory conditions. These bacterial strains differed in the morphological, physiological, and biochemical characteristics and in the composition of enzymes. The strains were studied for the ability to synthesize intracellular oligo-and polysaccharide hydrolases and alginate lyases. The optimal conditions for the growth of bacterial strain F14 and the biosynthesis of fucoidanase and polymannuronate-specific alginate lyase were determined. The partially purified alginate lyase was stable at a temperature up to 40°C and had an optimal pH 6.0 and an optimal temperature 35°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseeva, S.A., Bakunina, I.Yu., Nedashkovskaya, O.I., et al., Intracellular alginolytic enzymes of the marine bacterium Pseudoalteromonas citrea KMM 3297, Biochemistry (Moscow), 2004, vol. 69, no. 3, pp. 262–269.

    CAS  PubMed  Google Scholar 

  2. Bakunina, I.Yu., Ivanova, E.P., Nedashkovskaya, O.I., et al., A search for producers of a-galactosidases among marine bacteria of the genus Alteromonas, Prikl. Biokhim. Mikrobiol., 1996, vol. 32, no. 6, pp. 624–628.

    CAS  Google Scholar 

  3. Bakunina, I.Yu., Nedashkovskaya, O.I., Alekseeva, S.A., et al., Degradation of fucoidan by the marine proteobacterium Pseudoalteromonas citrea, Microbiology, 2002, vol. 71, no. 1, pp. 41–47.

    Article  CAS  Google Scholar 

  4. Bakunina, I.Yu., Nedashkovskaya, O.I., Kim, S.B., et al., Diversity of glycosidase activities in the bacteria of the phylum Bacteroidetes isolated from marine algae, Microbiology, 2012, vol. 81, no. 6, pp. 688–695.

    Article  CAS  Google Scholar 

  5. Bakunina, I.Yu., Shevchenko, L.S., Nedashkovskaya, O.I., et al., Screening of marine bacteria for fucoidanases, Microbiology, 2000, vol. 69, no. 3, pp. 303–308.

    Article  CAS  Google Scholar 

  6. Burtseva, Yu.V., Verigina, N.S., Sova, V.V., et al., OGlycosylhydrolases of marine filamentous fungi: β-1,3-Glucanases of Trichoderma aureviride, Appl. Biochem. Microbiol., 2003, vol. 39, no. 5, pp. 475–481.

    Article  CAS  Google Scholar 

  7. Burtseva, Yu.V., Kusaikin, M.I., Sova, V.V., et al., Distribution of fucoidan hydrolases and some glycosidases among marine invertebrates, Russ. J. Mar. Biol., 2000, vol. 26, no. 6, pp. 453–456.

    Article  Google Scholar 

  8. Burtseva, Yu.V., Sova, V.V., Pivkin, M.V., and Zvyagintseva, T.N., Enzymes of carbohydrate metabolism of mycelial fungi from marine environments. β-1,3-Glucanase of the marine fungus Chaetomium indicum, Biochemistry, 2000, vol. 65, no. 10, pp. 1175–1183.

    CAS  PubMed  Google Scholar 

  9. Burtseva, Yu.V., Sova, V.V., Pivkin, M.V., et al., Distribution of O-glycosylhydrolases in marine fungi of the Sea of Japan and the Sea of Okhotsk: Characterization of exocellular N-acetyl-β-D-glucosaminidase of the marine fungus Penicillium canescens, Appl. Biochem. Microbiol., 2010, vol. 46, no. 6, pp. 648–656.

    Article  CAS  Google Scholar 

  10. Burtseva, Yu.V., Shevchenko, N.M., Zvyagintseva, T.N., et al., Polysaccharides of brown algae (Sargassum) from the South China Sea, Tret’ya mezhdunarodnaya nauchno-prakticheskaya konferentsiya “Morskie pribrezhnye ekosistemy. Vodorosli, bespozvonochnye i produkty ikh pererabotki” (Third Int. Sci.-Pract. Conf. “Marine Coastal Ecosystems. Algae, Invertebrates and Products of Their Processing”), Vladivostok: TINRO-Center, 2009, pp. 171–176.

    Google Scholar 

  11. Ermakova, S.P., Bakunina, I.Yu., Ivanova, E.E., et al., Effect of brown algae metabolites on the synthesis of Oglycosyl hydrolases by bacteria degrading the thallus of Fucus evanescens, Microbiology (Moscow), 2012, vol. 81, no. 3, pp. 367–372.

    Article  CAS  Google Scholar 

  12. Ivanova, E.P., Bakunina, I.Yu., Nedashkovskaya, O.I., et al., Incidence of marine microorganisms producing β-N-acetylglucosaminidases, α-galactosidases and α-N-acetylgalactosaminidases, Russ. J. Mar. Biol., 1998, vol. 24, no. 6, pp. 365–372.

    Google Scholar 

  13. Urvantseva, A.M., Bakunina, I.Yu., Nedashkovskaya, O.I., et al., Distribution of intracellular fucoidan hydrolases among marine bacteria of the family Flavobacteriaceae, Appl. Biochem. Microbiol., 2006, vol. 42, no. 5, pp. 484–491.

    Article  CAS  Google Scholar 

  14. Alkawash, M.A., Soothill, J.S., and Schiller, N.L., Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms, Acta Pathol. Microbiol. Immunol. Scand., 2006, vol. 114, no. 2, pp. 131–138.

    Article  CAS  Google Scholar 

  15. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, nos. 1–2, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  16. Brown, B.J. and Preston, J.F., L-Guluronan-specific alginate lyase from a marine bacterium associated with Sargassum, Carbohydr. Res., 1991, vol. 211, pp. 91–102.

    Article  CAS  PubMed  Google Scholar 

  17. Burtseva, Yu.V., Verigina, N.S., Sova, V.V., et al., Filamentous marine fungi as producers of O-glycosylhydrolases: β-1,3-glucanase from Chaetomium indicum, Mar. Biothechnol., 2003, vol. 5, no. 4, pp. 349–359.

    Article  CAS  Google Scholar 

  18. Cantarel, B.L., Coutinho, P.M., Rancurel C., et al., The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics, Nucl. Acids Res., 2009, vol. 37, pp. 233–238.

    Article  Google Scholar 

  19. Chen, X.-L., Dong, S., Xu F., et al., Characterization of a new cold-adapted and salt-activated polysaccharide lyase family 7 alginate lyase from Pseudoalteromonas sp. SM0524, Front. Microbiol., 2016, vol. 7. doi 10.3389/micb.2016.01120

  20. Colin, S., Deniaud E., Jam, M., et al., Cloning and biochemical characterization of the fucanase FcnA: Definition of a novel glycoside hydrolase family specific for sulfated fucans, Glycobiology, 2006, vol. 16, no. 11, pp. 1021–1032.

    Article  CAS  PubMed  Google Scholar 

  21. Dong, S., Wei, T.D., Chen, X.L., et al., Molecular insight into the role of the N-terminal extension in the maturation, substrate recognition, and catalysis of a bacterial alginate lyase from polysaccharide lyase family 18, J. Biol. Chem., 2014, vol. 289, no. 43, pp. 29558–29569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fenoradosoa, T.A., Ali, G., Delattre, C., et al., Extraction and characterization of an alginate from the brown seaweed Sargassum turbinarioides Grunow, J. Appl. Phycol., 2010, vol. 22, no. 2, pp. 131–137.

    Article  CAS  Google Scholar 

  23. Gacesa, P., Enzymic degradation of alginates, Int. J. Biochem., 1992, vol. 24, no. 4, pp. 545–552.

    Article  CAS  PubMed  Google Scholar 

  24. Han, F., Gong, Q.-H., Song. K., et al., Cloning, sequence analysis and expression of gene alyVI encoding alginate lyase from marine bacterium Vibrio sp. QY 101, DNA Sequence, 2004, vol. 15, nos. 5–6, pp. 344–350.

    Article  CAS  PubMed  Google Scholar 

  25. Huynh, Q.N. and Nguyen, H.D., The seaweed resources of Vietnam, in Seaweed Resources of the World, Critchley, A.T. and Ohno, M., Eds., Yokosuka: Kanagawa Int. Fish. Train. Center, Jpn. Int. Coop. Agency, 1998, pp. 62–69.

  26. Itoh, H., Noda, H., Amano, H., et al., Antitumor activity and immunological properties of marine algal polysaccharides, especially fucoidan, prepared from Sargassum thunbergii of Phaeophyceae, Anticancer Res., 1993, vol. 13, no. 6, pp. 2045–2052.

    CAS  PubMed  Google Scholar 

  27. Ivanova, E.P., Bakunina, I.Yu., Nedashkovskaya, O.I., et al., Ecophysiological variabilities in ectohydrolytic enzyme activities of some Pseudoalteromonas species, P. citrea, P. issachenkonii, and P. nigrifaciens, Curr. Microbiol., 2003, vol. 45, no. 1, pp. 6–10.

    Article  Google Scholar 

  28. Ivanova, E.P., Bakunina, I.Yu., Sawabe, T., et al., Two species of culturable bacteria associated with degradation of brown algae Fucus evanescens, Microb. Ecol., 2002, vol. 43, no. 2, pp. 242–249.

    Article  CAS  PubMed  Google Scholar 

  29. Ji, S.-Q., Wang, B., Lu, M., et al., Defluviitalea phaphyphila sp. nov., a novel thermophilic bacterium that degrades brown algae, Appl. Environ. Microbiol., 2016, vol. 82, no. 3, pp. 868–877.

    Article  CAS  PubMed Central  Google Scholar 

  30. Josephine, A., Amudha, G., Veena, C.K., et al., Beneficial effects of sulfated polysaccharides from Sargassum wightii against mitochondrial alterations induced by Cyclosporine A in rat kidney, Mol. Nutr. Food Res., 2007, vol. 51, no. 11, pp. 1413–1422.

    Article  CAS  PubMed  Google Scholar 

  31. Kim, H.S., Lee, C.-G., and Lee, E.Y., Alginate lyase: structure, property, and application, Biotechnol. Bioprocess Eng., 2011, vol. 16, no. 5, pp. 843–851.

    Article  CAS  Google Scholar 

  32. Kitamura, K., Matsuo, M., and Yasui, T., Enzymic degradation of fucoidan by fucoidanase from the hepa topancreas of Patinopecten yessoensis, Biosci. Biotechnol. Biochem., 1992, vol. 56, pp. 490–494.

    Article  CAS  PubMed  Google Scholar 

  33. Kusaykin, M.I., Bakunina, I.Yu., Sova, V.V., et al., Structure, biological activity, and enzymatic transformation of fucoidans from the brown seaweeds, Biotechnol. J., 2008, vol. 3, no. 7, pp. 904–915.

    Article  CAS  PubMed  Google Scholar 

  34. Nelson, N., A photometric adaptation of the Somogyi method for the determination of glucose, J. Biol. Chem., 1944, vol. 153, no. 1, pp. 375–381.

    CAS  Google Scholar 

  35. Nguyen Huu Dai, Rong Mo (Sargassaceae) Viet Nam, Hochiminh: Agriculture, 1997.

    Google Scholar 

  36. Park, D., Jagtap, S., and Nair, S.K., Structure of a PL17 family alginate lyase demonstrates functional similarities among exotype depolymerases, J. Biol. Chem., 2014, vol. 289, no. 12, pp. 8645–8655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Preiss, J. and Ashwell, G., Alginic acid metabolism in bacteria: I. Enzymatic formation of unsaturated oligosaccharides and 4-deoxy-L-erythro-5-hexoseulose uronic acid, J. Biol. Chem., 1962, vol. 237, no. 2, pp. 309–316.

    CAS  PubMed  Google Scholar 

  38. Rodríguez-Jasso, R.M., Mussatto, S.I., Pastrana, L., et al., Fucoidan-degrading fungal strains: screening, morphometric evaluation, and influence of medium composition, Appl. Biochem. Biotechnol., 2010, vol. 162, no. 8, pp. 2177–2188.

    Article  PubMed  Google Scholar 

  39. Sakami, T., Sugiyama, M., and Kurata, K., Growthstimulating effects of algal excreted substances on bacteria isolated from algal blade surface of the brown alga Eisenia bicyclis, Nippon Suisan Gakkaishi, 1994, vol. 60, no. 6, pp. 749–753.

    Article  Google Scholar 

  40. Sasaki, K., Sakai, T., Kojima, K., et al., Partial purification and characterization of an enzyme releasing 2-sulfo-α-L-fucopyranosyl (1→2) pyridylaminated fucose from a sea urchin, Strongylocentrotus nudus, Biosci. Biotechnol. Biochem., 1996, vol. 60, no. 4, pp. 666–668.

    Article  CAS  Google Scholar 

  41. Sawabe, T., Ohtsuka, M., and Ezura, Y., Novel alginate lyases from marine bacterium Alteromonas sp. strain H-4, Carbohydr. Res., 1997, vol. 304, no. 1, pp. 69–76.

    Article  CAS  PubMed  Google Scholar 

  42. Shiraiwa, Y., Abe, K., Sasaki, S., et al., Alginate lyase activities in the extracts from several brown algae, Bot. Mar., 1975, vol. 18, no. 2, pp. 97–104.

    Article  CAS  Google Scholar 

  43. Silchenko, A.S., Kusaykin, M.I., Kurilenko, V.V., et al., Hydrolysis of fucoidan by fucoidanase isolated from the marine bacterium, Formosa algae, Mar. Drugs, 2013, vol. 11, no. 7, pp. 2413–2430.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Smibert, R.M. and Krieg, N.R., Phenotypic characterization, in Methods for General and Molecular Bacteriology, Washington: ASM, 1994, pp. 611–651.

    Google Scholar 

  45. Thinh, P.D., Menshova, R.V., Ermakova, S.P., et al., Structural characteristics and anticancer activity of fucoidan from the brown alga Sargassum mcclurei, Mar. Drugs., 2013, vol. 11, pp. 1456–1476.

    Article  CAS  PubMed  Google Scholar 

  46. Wang, B., Ji, S.-Q., Lu, M., et al., Biochemical and structural characterization of alginate lyases: an update, Curr. Biotechnol., 2015, vol. 4, no. 3, pp. 223–239.

    Article  Google Scholar 

  47. Wang, M., Chen L., Liu, Z., et al., Isolation of a novel alginate lyase-producing Bacillus litoralis strain and its potential to ferment Sargassum horneri for biofertilizer, Microbiology Open, 2016, vol. 5, pp. 1038–1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, Y.-H., Yu, G.-L., Wang, X.-M., et al., Purification and characterization of alginate lyase from marine Vibrio sp. YWA, Acta Biochim. Biophys. Sin., 2006, vol. 38, no. 9, pp. 633–638.

    Article  CAS  PubMed  Google Scholar 

  49. Wong, T.Y., Preston, L.A., and Schiller, N.L., Alginate lyase: Review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications, Annu. Rev. Microbiol., 2000, vol. 54, pp. 289–340.

    Article  CAS  PubMed  Google Scholar 

  50. Yabur, R., Bashan, Y., and Hernández-Carmona, G., Alginate from the macroalgae Sargassum sinicola as a novel source for microbial immobilization material in wastewater treatment and plant growth promotion, J. Appl. Phycol., 2007, vol. 19, no. 1, pp. 43–53.

    Article  CAS  Google Scholar 

  51. Zhu, B. and Yin, H., Alginate lyase: Review of major sources and classification, properties, structure-function analysis and applications, Bioengineered, 2015, vol. 6, no. 3, pp. 125–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhu, W., Chiu, L.C.M., Ooi, V.E.C., et al., Antiviral property and mode of action of a sulphated polysaccharide from Sargassum patens against herpes simplex virus type 2, Int. J. Antimicrob. Agents, 2004, vol. 24, no. 3, pp. 279–283.

    Article  CAS  PubMed  Google Scholar 

  53. Zvyagintseva, T.N., Shevchenko, N.M., Nazarenko, E.L., et al., Water-soluble polysaccharides of some brown algae of the Russian Far-East. Structure and biological action of low-molecular mass polyuronans, J. Exp. Mar. Biol. Ecol., 2005, vol. 320, no. 2, pp. 123–131.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Dubrovskaya.

Additional information

Original Russian Text © Yu.V. Dubrovskaya, V.V. Kurilenko, Cao Thi Thuy Hang, Bui Minh Ly, I.Yu. Bakunina, T.N. Zvyagintseva, V.V. Mikhailov, 2017, published in Biologiya Morya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubrovskaya, Y.V., Kurilenko, V.V., Hang, C.T.T. et al. The enzymes of a marine bacterial isolate from the brown alga Sargassum polycystum agardh, 1821, that catalyzes the transformation of polyanionic oligo-and polysaccharides. Russ J Mar Biol 43, 392–399 (2017). https://doi.org/10.1134/S1063074017050030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074017050030

Keywords

Navigation