Skip to main content
Log in

Variation in the contents of lactate and alanine in the coelomic fluid of the sea urchin Mesocentrotus nudus (A. Agassiz, 1863) indicates anaerobic glycolysis

  • Biochemical Ecology
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

Using the method of nuclear magnetic-resonance spectroscopy, lactic acid, alanine, and aspartate were revealed in the coelomic fluid of the black sea urchin Mesocentrotus nudus, which indicates anaerobic metabolism in echinoderms. Energy metabolism of this type is intensified in stressful situations, when the inflow of oxygen into cells becomes insufficient. This compensatory response of energy metabolism is an important mechanism for adaptation to changing environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biokhimiya: Uchebnik dlya vuzov (Biochemistry: Manual for Higher Education Institutions), Severin, E.S., Ed., Moscow: Geotar-Media, 2003.

  2. Drozdov, K.A., The use of magnetic resonance imaging and spectroscopy for characterizing the functional and metabolic changes in brain during the early post-concussion recovery period, Extended Abstract of Cand. (Biol.) Sci. Dissertation, St. Petersburg, 2013.

    Google Scholar 

  3. Kolokolova, T.N., Savel’ev, O.Yu., and Sergeev, N.M., Metabolic analysis of human biological fluids by 1H NMR spectroscopy, J. Anal. Chem., 2008, vol. 63, no. 2, pp. 104–120.

    Article  CAS  Google Scholar 

  4. Laborit, H., Les Regulations Metaboliques, Paris: Masson et Cie Editeurs, 1965.

    Google Scholar 

  5. Meshcheryakova, O.V., Churova, M.V., and Nemova, N.N., Mitochondrial lactate-oxidizing complex and its significance for maintenance of energy homeostasis in cells (review), in “Sovremennye problemy fiziologii i biokhimii vodnykh organizmov, T. 1: Ekologicheskiye fiziologiya i biokhimiya vodnykh organizmov” (“Current Problems of Physiology and Biochemistry of Aquatic Organisms, vol. 1: Ecological Physiology and Biochemistry of Aquatic Organisms”), Petrozavodsk: Kol’sk. Nauch. Tsentr, Russ. Akad. Nauk, 2010, pp. 163–171.

    Google Scholar 

  6. Drozdov, K.A., RF Patent 2 409 319, Byull. Izobret., 2011, no. 2.

    Google Scholar 

  7. Agar, N.S., Rae, C.D., Chapman, B.E., and Kuchel, P.W., 1H-NMR spectroscopic survey of plasma and erythrocytes from selected marsupials and domestic animals of Australia, Comp. Biochem. Physiol., 1991, vol. 99, pp. 575–597.

    CAS  Google Scholar 

  8. Ballantyne, J.S., Mitochondria: aerobic and anaerobic design—lessons from molluscs and fishes, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2004, vol. 139, pp. 461–467.

    Article  Google Scholar 

  9. Barrington, E.J.W., Invertebrate Structure and Function, London: Nelson, 1979, 2nd ed.

    Google Scholar 

  10. Braun, S., Kalinowski, H.-O., and Berger, S., 150 and More Basic NMR Experiments: A Practical Course, Weinheim: Wiley, 1998.

    Google Scholar 

  11. Chia, F. and Xing, J., Echinoderm coelomocytes, Zool. Stud., 1996, vol. 35, pp. 231–254.

    Google Scholar 

  12. de Zwaan, A., Molluscs, in Metazoan Life without Oxygen, London: Chapman and Hall, 1991, pp. 186–217.

    Google Scholar 

  13. de Zwaan, A. and Eertman, R.H.M., Anoxic or aerial survival of bivalves and other euryoxic invertebrates as a useful response to environmental stress—a comprehensive review, Comp. Biochem. Physiol., 1996, vol. 113, pp. 299–312.

    Google Scholar 

  14. de Zwaan, A. and Wijsman, T.C.M., Anaerobic metabolism in Bivalvia (Mollusca)—characteristics of anaerobic metabolism, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 1976, vol. 54, pp. 313–323.

    Article  Google Scholar 

  15. Finke, E., Portner, H.O., Lee, P.G., and Webber, D.M., Squid (Lolliguncula brevis) life in shallow waters: oxygen limitation of metabolism and swimming performance, J. Exp. Biol., 1996, vol. 199, pp. 911–921.

    CAS  PubMed  Google Scholar 

  16. Fukuzako, H., Takeuchi, K., Hokazono, Y., et al., Proton magnetic resonance spectroscopy of the left medial temporal and frontal lobes in chronic schizophrenia: preliminary report, Psychiatry Res.: Neuroimaging, 1995, vol. 61, pp. 193–200.

    Article  CAS  PubMed  Google Scholar 

  17. Grieshaber, M.K., Hardewig, I., Kreutzer, U., and Pörtner, H.O., Physiological and metabolic responses to hypoxia in invertebrates, Rev. Physiol., Biochem. Pharmacol., 1994, vol. 125, pp. 43–147.

    Article  CAS  Google Scholar 

  18. Guyon, P., Chilton, M.D., Petit, A., and Tempé, J., Agropine in “null-type” crown gall tumors: evidence for generality of the opine concept, Proc. Natl. Acad. Sci. U.S.A., 1980, vol. 77, pp. 2693–2697.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Halestrap, A.P., Wang, X.M., Poole, R.C., et al., Lactate transport in heart in relation to myocardial ischemia, Am. J. Cardiol., 1997, vol. 80, pp. A17–A25.

  20. Kumagai, H., Amino acid production, in The Prokayotes—A Handbook on the Biology of Bacteria, vol. 1: Symbiotic Associations, Biotechnology, Applied Microbiology, 3rd ed., Dworkin, M., et al., Eds., Singapore: Springer-Verlag, 2006, pp. 754–763.

    Google Scholar 

  21. Livingstone, D.R., Invertebrate and vertebrate pathways of anaerobic metabolism: evolutionary considerations, J. Geol. Soc. (London, U.K.), 1983, vol. 140, pp. 27–37.

    Article  CAS  Google Scholar 

  22. Menzel, M., Doppenberg, E.M., Zauner, A., et al., Increased inspired oxygen concentration as a factor in improved brain tissue oxygenation and tissue lactate levels after severe human head injury, J. Neurosurg., 1999, vol. 91, no. 1, pp. 1–10.

    Article  CAS  PubMed  Google Scholar 

  23. Nicholson, J.K. and Wilson, I.D., High resolution proton NMR spectroscopy of biological fluids, Prog. Nucl. Magn. Reson. Spectrosc., 1989, vol. 21, pp. 449–501.

    Article  CAS  Google Scholar 

  24. Ortmann, Ch. and Grieshaber, M.K., Energy metabolism and valve closure behaviour in the Asian clam Corbicula fluminea, J. Exp. Biol., 2003, vol. 206, pp. 4167–4178.

    Article  CAS  PubMed  Google Scholar 

  25. Schöttler, U. and Bennet, E.M., Annelids, in Metazoan Life without Oxygen, London: Chapman and Hall, 1991, pp. 165–185.

    Google Scholar 

  26. Smith, V.J., The echinoderms, in Invertebrate Blood Cells, Ratcliffe, N.A. and Rowley, A.F., Eds., London: Academic, 1981, vol. 2, pp. 513–562.

    Google Scholar 

  27. Tessem, M.B., Swanson, M.G., Keshari, K.R., et al., Evaluation of lactate and alanine as metabolic biomarkers of prostate cancer using 1H HR-MAS spectroscopy of biopsy tissues, Magn. Reson. Med., 2008, vol. 60, no. 3, pp. 510–516.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Wada, M., Narita, K., and Yokota, A., Alanine production in an H+-ATPaseand lactate dehydrogenasedefective mutant of Escherichia coli expressing alanine dehydrogenase, Appl. Microbiol. Biotechnol., 2007, vol. 76, no. 4, pp. 819–825.

    Article  CAS  PubMed  Google Scholar 

  29. Wang, W.X. and Widdows, J., Metabolic responses of the common mussel Mytilus edulis to hypoxia and anoxia, Mar. Ecol., Prog. Ser., 1993, vol. 95, pp. 205–214.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Drozdov.

Additional information

Original Russian Text © K.A. Drozdov, A.L. Drozdov, 2015, published in Biologiya Morya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drozdov, K.A., Drozdov, A.L. Variation in the contents of lactate and alanine in the coelomic fluid of the sea urchin Mesocentrotus nudus (A. Agassiz, 1863) indicates anaerobic glycolysis. Russ J Mar Biol 41, 311–314 (2015). https://doi.org/10.1134/S1063074015040069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074015040069

Keywords

Navigation