Skip to main content
Log in

The development of Porphyridium purpureum (Bory de Saint-Vincent) Drew et Ross, 1965 (Rhodophyta) from Amursky Bay, Sea of Japan, in a laboratory culture

  • Algology
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

The growth of the microscopic red alga Porphyridium purpureum was experimentally studied in different culture media and at various levels of water salinity. The ability of this species to recover after cryopreservation was analyzed. It was revealed that the growth rate and generation time of P. purpureum during the exponential growth phase did not significantly differ between cultures on f medium and those on Goldberg’s medium. The species has been found to withstand salinity variations ranging from 8 to 32 vol %. Cryopreservation of P. purpureum cells using three-step freezing with trehalose as a cryoprotectant showed that the dynamics of cell density after thawing insignificantly differed from the control ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizdaicher, N.A., Response to dilution of the unicellular alga Heterosigma akashiwo, Biol. Morya (Moscow), 1991, vol. 17, no. 3, pp. 55–60.

    Google Scholar 

  2. Aizdaicher, N.A. and Markina, Zh.V., Influence of changes in sea water salinity on the growth, photosynthetic pigment content, and cell size of the benthic alga Attheya ussurensis Stonik, Orlova et Crawford, 2006 (Bacillariophyta), Russ. J. Mar. Biol., 2011, vol. 37, no. 6, pp. 472–477.

    Article  CAS  Google Scholar 

  3. Aizdaicher, N.A. and Stonik, I.V., The peculiarities of the development of three species of benthic diatoms of the genus Attheya West from the Sea of Japan, Algologia, 2013, vol. 23, no. 1, pp. 37–47.

    Google Scholar 

  4. Alekhina, N.D., Balnokin, Yu.V., and Gavrilenko, V.F., Fiziologiya rastenii. Uchebnik dlya studentov vuzov (Plant Physiology. Textbook for Students of Higher Education Institutions), Moscow: Academia, 2005.

    Google Scholar 

  5. Gromov, B.V. and Tytova, N.N., The collection of microalga cultures at the Microbiological Laboratory of the Biological Institute, Leningrad University, in Kollektsiya mikrovodoroslei v SSSR (spisok kul’tur) (The Collection of Microalgae in the USSR (List of Cultures)), Pushchino: Nauchn. Tsentr Biol. Issled., Akad. Nauk USSR, 1988, pp. 52–91.

    Google Scholar 

  6. Gudvilovich, I.N., The influence of cultivation on growth and phycobiliprotein content in the red mircoalga Porphyridium purpureum (review), Ekol. Morya, 2010, no. 81, pp. 28–36.

    Google Scholar 

  7. Dzhafarova, S.K., The growth of clone cultures of polyhalophilic diatoms at water salinity variations, Algologia, 1991, vol. 1, no. 4, pp. 46–51.

    Google Scholar 

  8. Efremova, N.V., Development of techniques for obtaining of antioxidant products based on bioactive substances from cyanobacteria and microalgae, Extended Abstract of Doctoral Sci. (Biol.) Dissertation, Kishinev, 2009.

    Google Scholar 

  9. Kabanova, Yu.G., About cultivation of marine planktonic diatoms and peridinean algae under laboratory conditions, Tr. Inst. Okeanol., Akad. Nauk SSSR, 1961, no. 47, pp. 203–216.

    Google Scholar 

  10. Karaeva, N.I. and Dzhafarova, S.K., Morphology of some polyhalophilic diatoms in connection with water salinity variations, Bot. J., 1988, vol. 73, no. 4, pp. 477–485.

    Google Scholar 

  11. Lanskaya, L.A., Cultivation of algae, Ekologicheskaya fiziologiya morskikh planktonnykh vodoroslei (v usloviyakh kul’tur) (Ecological Physiology of Marine Planktonic Algae in Culture Conditions), Kiev: Naukova Dumka, 1971, pp. 5–21.

    Google Scholar 

  12. Orlova, T.Yu., Aizdaicher, N.A., and Stonik, I.V., Laboratornoye kul’tivirovaniye morskikh mikrovodoroslei, vklyuchaya produtsentov fitotoksinov: nauchno-metodicheskoye posobiye (Manual on Laboratory Cultivation of Marine Microalgae, Including Phytotoxin Producing Species), Vladivostok: Dal’nauka, 2011.

    Google Scholar 

  13. Pechurkin, N.S. and Terskov, I.A., Analiz kinetiki rosta i evolyutsii mikrobnykh populyatsii (v upravlyaemykh usloviyakh) (Analysis of the Growth and Evolution Kinetics of Microbial Populations under Managed Conditions), Novosibirsk: Nauka, 1975.

    Google Scholar 

  14. Radchenko, I.G. and Ilyash, L.V., The growth and photosynthetic activity of the diatom Thalassiosira weissflogii under decreasing salinity, Izv. Ross. Akad. Nauk, Ser. Biol., 2006, no 3, pp. 306–313.

    Google Scholar 

  15. Rudik, V.F. and Chepoi, L.E., Biochemical composition of Porphyridium cruentum Nägeli CNM-AR-01 (Rhodophyta) during cultivation, Algologia, 2001, vol. 11, no. 1, pp. 52–56.

    Google Scholar 

  16. South, G.R. and Whittick, A., Introduction to Phycology, Oxford: Blackwell, 1987.

    Google Scholar 

  17. Temnykh, A.A., Sid’ko, F.Ya., and Trenkenshu, R.P., Studies on the growth of Porphyridium cruentum under different conditions of mineral nutrition and irradiation support, in Operativnye informatsionnye materialy (fiziologiya rastitel’noi kletki, mineral’nogo i svetovogo pitaniya) (Operative Information Materials (Physiology of Plant Cell, Mineral and Light Nutrition)), Krasnoyarsk, 1984, pp. 34–37.

    Google Scholar 

  18. Khlebovich, V.V., Kriticheskaya solenost’ biologicheskikh protsessov (Critical Salinity of Biological Processes), Leningrad: Nauka, 1974.

    Google Scholar 

  19. Yur’eva, M.I., Lipid composition of the unicellular red alga Porphyridium cruentum, Biol. Morya (Moscow), 1988, vol. 14, no. 1, pp. 41–44.

    Google Scholar 

  20. Ackman, R.G., Tocher, C.S., and McLachlan, J., Marine phytoplankter fatty acids, J. Fish. Res. Board Can., 1968, vol. 25, pp. 1606–1611.

    Google Scholar 

  21. Ahern, T.J., Katoh, S., and Sada, E., Arachidonic acid production by the red alga Porphyridium cruentum, Biotekhnol. Bioeng., 1983, vol. 25, pp. 1057–1070.

    Article  CAS  Google Scholar 

  22. Ben-Amotz, A. and Gilboa, A., Cryopreservation of marine unicellular algae, I: A survey of algae with regard to size, culture age, photosynthetic activity and chlorophyll-to-cell ratio, Mar. Ecol.: Progr. Ser., 1980, vol. 2, pp. 157–161.

    Article  CAS  Google Scholar 

  23. Benson, E.E., Cryopreservation of phytodiversity: A critical appraisal of theory and practice, Crit. Rev. Plant Sci., 2008, vol. 27, no. 3, pp. 141–219.

    Article  CAS  Google Scholar 

  24. Day, J.G., Cryoconservation of microalgae and cyanobacteria, Cryo-Lett., 1998, vol. 1, pp. 7–14.

    Google Scholar 

  25. Fabregas, J., Herrero, C., Abalde, J., and Cabezas, B., Growth, chlorophyll a and protein of the marine microalga Isochrysis galbana in batch culture with different salinities and high nutrient concentrations, Aquaculture, 1985, vol. 50, pp. 1–11.

    Article  CAS  Google Scholar 

  26. Fogg, G.E., Algal Culture and Phytoplankton Ecology, Madison: Univ. of Wisconsin Press, 1966.

    Google Scholar 

  27. Fu, F. and Bell, P.R.F., Effect of salinity on growth, pigmentation, NO2 fixation and alkaline phosphatase activity of cultured Trichodesmium sp., Mar. Ecol.: Progr. Ser., 2003, vol. 257, pp. 69–76.

    Article  CAS  Google Scholar 

  28. Fuentes, M.R., Fernandez, G.A., and Perez, J.S., Biomass nutrient profiles of the microalga Porphyridium cruentum, Food Chem., 2000, vol. 70, no. 3, pp. 345–353.

    Article  Google Scholar 

  29. Golueke, C. and Oswald, W., The mass culture of Porphyridium cruentum, Appl. Microbiol., 1962, vol. 10, pp. 102–107.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Geresh, S., Adin, I., Yarmolinsky, E., and Karpasas, M., Characterization of the extracellular polysaccharide of Porphyridium sp.: molecular weight determination and rheological properties, Carbohydr. Polym., 2002, vol. 50, no. 2, pp. 183–189.

    Article  CAS  Google Scholar 

  31. Guillard, R.R.L., Culture of phytoplankton for feeding marine in vertebrates, in Culture of Marine Invertebrate Animals, Smith, W.L. and Chanley, M.H., Eds., New York: Plenum, 1975, pp. 26–60.

    Google Scholar 

  32. Heaney-Kieras, J. and Chapman, D., Structural studies on the extracellular polysaccharide of the red alga, Porphyridium cruentum, Carbohydr. Res., 1976, vol. 52, no. 1, pp. 169–177.

    Article  CAS  Google Scholar 

  33. Jones, R.F., Speen, H.L., and Kury, W., Studies on the growth of the red alga Porphyridium cruentum, Physiol. Plant., 1963, vol. 16, pp. 636–643.

    Article  CAS  Google Scholar 

  34. Kurano, N. and Miyachi, S., Microalgal studies for the 21st Century, Hydrobiologia, 2004, vol. 512, nos. 1–3, pp. 27–32.

    Article  CAS  Google Scholar 

  35. Leibo, S.P. and Jones, R.F., Effects of subzero temperatures on the unicellular red alga Porphyridium cruentum, J. Cell Comp. Physiol., 1963, vol. 62, pp. 295–302.

    Article  CAS  Google Scholar 

  36. Mazur, P., Physical factors implicated in the death of microorganisms at subzero temperatures, Ann. N.Y. Acad. Sci., 1960, vol. 85, no. 2, pp. 610–629.

    Article  CAS  PubMed  Google Scholar 

  37. McLachlan, J., The effect of salinity on growth and chlorophyll content in representative classes of unicellular marine algae, Can. J. Microbiol., 1961, vol. 7, pp. 392–406.

    Google Scholar 

  38. Minkova, K., Michailov, Y., and Toncheva-Panova, T., Antiviral activity of Porphyridium cruentum polysaccharide, Pharmazie, 1996, vol. 51, pp. 154–160.

    Google Scholar 

  39. Ramus, J. and Groves, S.T., Incorporation of sulfate into the capsular polysaccharide of the red alga Porphyridium, J. Cell Biol., 1972, vol. 54, pp. 399–407.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Ramus, J., The production of extracellular polysaccharides by the unicellular red alga Porphyridium aerugineum, J. Phycol., 1972, vol. 8, pp. 97–111.

    CAS  Google Scholar 

  41. Rhodes, L., Smith J., Tervit, R., et al., Cryopreservation of economically valuable marine micro-algae in the classes Bacillariophyceae, Chlorophyceae, Cyanophyceae, Dinophyceae, Haptophyceae, Prasinophyceae, and Rhodophyceae, Cryobiology, 2006, vol. 52, pp. 152–156.

    Article  CAS  PubMed  Google Scholar 

  42. Spencer, C.P., Studies on the culture of a marine diatom, J. Mar. Biol. Assoc. U.K., 1954, vol. 33, pp. 265–290.

    Article  Google Scholar 

  43. Starr, R.S., The culture collection of algae at Indiana University, Am. J. Bot., 1960, vol. 47, pp. 67–80.

    Article  Google Scholar 

  44. Taylor, R. and Fletcher, R.L., Cryopreservation of eukaryotic algae—a review of methodologies, J. Appl. Phycol., 1999, vol. 10, no. 5, pp. 481–501.

    Article  Google Scholar 

  45. Vonshak, A., Porphyridium, Micro-Algal Biotechnology, Borowitzka, M.A. and Borowitzka, L.J., Eds., Cambridge: Cambridge Univ. Press, 1988, pp. 122–134.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Aizdaicher.

Additional information

Original Russian Text © N.A. Aizdaicher, I.V. Stonik, A.V. Boroda, 2014, published in Biologiya Morya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aizdaicher, N.A., Stonik, I.V. & Boroda, A.V. The development of Porphyridium purpureum (Bory de Saint-Vincent) Drew et Ross, 1965 (Rhodophyta) from Amursky Bay, Sea of Japan, in a laboratory culture. Russ J Mar Biol 40, 279–285 (2014). https://doi.org/10.1134/S1063074014040038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074014040038

Keywords

Navigation