Skip to main content
Log in

Optothermal Traps Based on Sector Diffraction Optical Elements

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

A procedure is described for obtaining sectoral diffractive optical elements created from the phase distributions of simple optical elements. The capture and rotation of latex microparticles with diameters of 3–4 μm in optothermal traps is demonstrated using the resulting elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., and Chu, S., Opt. Lett., 1986, vol. 11, p. 288.

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Ashkin, A., IEEE J. Sel. Top. Quantum Electron., 2000, vol. 6, no. 6, p. 841.

    Article  CAS  ADS  Google Scholar 

  3. Favre-Bulle, I.A., Stilgoe, A.B., Scott, E.K., and Rubinsztein-Dunlop, H., Nanophotonics, 2019, vol. 8, no. 6, p. 1023.

    Article  CAS  Google Scholar 

  4. Cheng, K., Guo, J., Fu, Y., and Guo, J., Sens. Actuators, A, 2021, vol. 322, p. 112616.

    Article  CAS  Google Scholar 

  5. Zemánek, P., Volpe, G., Jonáš, A., and Brzobohatý, O., Adv. Opt. Photonics, 2019, vol. 11, p. 577.

    Article  ADS  Google Scholar 

  6. Forbes A., de Oliveira, M., and Dennis, M.R., Nat. Photonics, 2021, vol. 15, p. 253.

  7. Kotlyar, V.V., Kovalev, A.A., Stafeev, S.S., et al., Bull. Russ. Acad. Sci.: Phys., 2022, vol. 86. no. 10, p. 1158.

  8. Volyar, A.V., Abramochkin, E.G., Bretsko, M.V., et al., Bull. Russ. Acad. Sci.: Phys., 2022, vol. 86, no. 10, p. 1151.

  9. Curtis, J.E., Koss, B.A., and Grier, D.G., Opt. Commun., 2002, vol. 207, p. 169.

    Article  CAS  ADS  Google Scholar 

  10. Chapin, S.C., Germain, V., and Dufresne, E.R., Opt. Express, 2006, vol. 14, no. 26, p. 13095.

    Article  PubMed  ADS  Google Scholar 

  11. Chen, Z. and Jiang, Y., J. Quant. Spectrosc. Radiat. Transfer, 2020, vol. 244, p. 106851.

    Article  CAS  Google Scholar 

  12. Jiang, J., Xu, D., Mo, Z., et al., Opt. Express, 2022, vol. 30, no. 7, p. 11331.

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Wen, J., Gao, B., Zhu, G., et al., Opt. Laser. Eng., 2022, vol. 148, p. 106773.

    Article  Google Scholar 

  14. Shahabadi, V. and Madadi, E., J. Opt. Soc. Am., vol. 37, no. 12, p. 3665.

  15. Qiu, Z., Cao, B., Huang, K.K., et al., Opt. Commun., 2022, vol. 510, p. 127915.

    Article  CAS  Google Scholar 

  16. Kotova, S.P., Losevsky, N.N., Mayorova, A.M., and Prokopova, D.V., Bull. Lebedev Phys. Inst., 2022, vol. 49, no. 11, p. 362.

    Article  ADS  Google Scholar 

  17. Ikonnikov, D.A., Vyunisheva, S.A., Prokopova, D.V., et al., Laser Phys. Lett., 2023, vol. 20, p. 086002.

    Article  ADS  Google Scholar 

  18. Rodrigo, J., Angulo, M., and Alieva, T., Opt. Express, 2018, vol. 26, no. 14, p. 18608.

    Article  PubMed  ADS  Google Scholar 

  19. Kotova, S.P., Losevsky, N.N., Mayorova, A.M., et al., Bull. Russ. Acad. Sci.: Phys., 2022, vol. 86, no. 12, p. 1434.

    Article  CAS  Google Scholar 

  20. Korobtsov, A.V., Kotova, S.P., Losevsky, N.N., et al., Bull. Lebedev Phys. Inst., 2023, vol. 50, no. 1 (suppl.), p. 856.

  21. Wu, Z., Zhao, J., Dou, J., et al., Opt. Express, 2022, vol. 30, no. 24, p. 42892.

    Article  PubMed  ADS  Google Scholar 

  22. Afanasiev, K., Korobtsov, A., Kotova, S., et al., J. Phys.: Conf. Ser., 2013, vol. 414, no. 1, p. 012017.

    CAS  Google Scholar 

  23. Zenteno-Hernandez, J.A., Lozano, J.V., Sarabia-Alonso, J.A., et al., Opt. Lett., 2020, vol. 45, no. 14, p. 3961.

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Lin, L., Hill, E.H., Peng, X., and Zheng, Y., Acc. Chem. Res., 2018, vol. 51, no. 6, p. 1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hosokawa, C., Tsuji, T., Kishimoto, T., et al., J. Phys. Chem. C, 2020, vol. 124, no. 15, p. 8323.

    Article  CAS  Google Scholar 

  26. Kotova, S.P., Korobtsov, A.V., Losevsky, N.N., et al., J. Quant. Spectrosc. Radiat. Transfer, 2021, vol. 268, p. 107641.

    Article  CAS  Google Scholar 

  27. Samagin, S.A., A program for controlling the image of the phase delay distribution of a diffractive optical phase element when working with a display-type liquid crystal spatial light modulator, Certificate of registration of a computer program no. 2022611374, 2022.

  28. Zhang, S., Scott, E.Y., Singh, J., Chen, Y., et al., Proc. Natl. Acad. Sci. U. S. A., 2019, vol. 116, p. 14823.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Kotova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotova, S.P., Losevsky, N.N., Mayorova, A.M. et al. Optothermal Traps Based on Sector Diffraction Optical Elements. Bull. Russ. Acad. Sci. Phys. 87, 1767–1772 (2023). https://doi.org/10.1134/S1062873823704038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062873823704038

Navigation