Skip to main content
Log in

PARTICLE–FREE AIR BUBBLE INTERACTION IN LIQUID

  • MINERAL DRESSING
  • Published:
Journal of Mining Science Aims and scope

Abstract

The authors study dynamics of heavy particle attached to the surface of free air bubble in liquid. The bubble with its surface vibrations and the particle are considered as a single mechanical system with geometric constraint. It is assumed that the main forces to govern interaction of these objects are the inertia force due to surface vibration of the bubble and the capillary adhesion force. The stability conditions of particle–bubble flotation aggregate at various initial surface vibrations of the bubble and at different masses of the particle are described. The velocities of the surface vibration modes are governed by the energy of turbulent pulsations in liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Tabosa, E., Runge, K., and Duffy, K.A., Strategies for Increasing Coarse Particle Flotation in Conventional Flotation Cells,Proc. 6th Int. Flotation Conf., Cape Town, South Africa, 2013.

  2. Goel, S. and Jameson, G.J., Detachment of Particles from Bubbles in an Agitated Vessel, Miner. Eng., 2012, vol. 36–38, pp. 324–330.

  3. Nguyen, A.V., An-Vo, D.A., Tran-Cong, T., and Evans, G.M., A Review of Stochastic Description of the Turbulence Effect on Bubble–Particle Interactions in Flotation, Int. J. Miner. Proc., 2016, vol. 156, pp. 75–86.

  4. Pyke, B., Fornasiero, D., and Ralston, J., Bubble–Particle Heterocoagulation under Turbulent Conditions, J. Colloid Interface Sci., 2003, vol. 265, pp. 141–151.

  5. Nguyen, A., New Method and Equations for Determining Attachment Tenacity and Particle Size Limit in Flotation, Int. J. Miner. Proc., 2003, vol. 68, pp. 167–182.

  6. Kondrat’ev, S.A. and Izotov, A.S., Influence of Bubble Oscillations on the Strength of Particle Adhesion, with an Accounting for the Physical and Chemical Conditions of Flotation, J. Min. Sci., 1998, vol. 34, no. 5, pp. 459–465.

  7. Kondrat’ev, S.A. and Izotov, A.S., Interaction of a Gas–Liquid Phase Interface with a Mineral Particle, J. Min. Sci., 1999, vol. 35, no. 4, pp. 439–444.

  8. Stevenson, P., Ata, S., and Evans, G.M., The Behavior of an Oscillating Particle Attached to a Gas-Liquid Surface, Ind. Eng. Chem. Res., 2009, vol. 48, pp. 8024–8029.

  9. Rayleigh, L., On the Capillary Phenomena of Jets. Proc. R. Soc. London, 1879, vol. 29, pp. 71–97.

  10. Deryagin, B.V., Theory of Distortions of the Plane Surface of a Liquid by Small Objects and its Application to Measurement of Edge Wetting Angles of Thin Films of Filaments and Fibers, Dokl. Akad. Nauk. SSSR, 1946, vol. 51, no. 7, pp. 517–520.

  11. Tovbin, M.V., Chesha, I.I., and Dukhin, S.S., Investigation of Properties of Surface Layer of Liquids by the Floating Drop Method,Kolloid. Zh., 1970, vol. 32, no. 5, pp. 771–777.

  12. Lanczos, C., The Variational Principles of Mechanics, University of Toronto Press, 1949.

  13. Vejrazka, J., Vobecka, L., and Tihon, J., Linear Oscillations of a Supported Bubble or Drop, Phys. Fluids, 2013, vol. 25.

  14. Snegirev, AYu., Vysokoproizvoditel’nye vychisleniya v tekhnicheskoi fizike. Chislennoe modelirovanie turbulentnykh techenii (High Performance Computing in Technical Physics. Numerical Modeling of Turbulent Flows), Saint Petersburg: Izd. Politekh Univ., 2009.

  15. Liepe, F. and Mockel, H.O., Studies of Combination of Substances in Liquid-Phase 6, Influence of Turbulence on Mass-Transfer of Suspended Particles, Chem. Technol., 1976, vol. 28. pp. 205–209.

  16. Andersson, R. and Andersson, B., On the Breakup of Fluid Particles in Turbulent Flows, Am. Inst. Chem. Eng. J., 2006, vol. 52, no. 6, pp. 2020–2030.

  17. Schubert, H. and Bischofberger, C., On the Microprocesses Air Dispersion and Particle-Bubble Attachment in Flotation Machines as well as Consequences for the Scale-Up of Macroprocesses, Int. J. Miner. Proc., 1998, vol. 52, no. 4, pp. 245–259.

  18. Schubert, H., Nanobubbles, Hydrophobic Effect, Heterocoagulation and Hydrodynamics in Flotation, Int. J. Miner. Proc., 2005, vol. 78, no. 1, pp. 11–21.

  19. Rodrigues, W.J., Leal Filho, L.S., and Masini, E.A., Hydrodynamic Dimensionless Parameters and their Influence on Flotation Performance of Coarse Particles, Miner. Eng., 2001, vol. 14, no. 9, pp. 1047–1054.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Kondrat’ev or N. P. Moshkin.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2020, No. 6, pp. 125–135. https://doi.org/10.15372/FTPRPI20200611.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondrat’ev, S.A., Moshkin, N.P. PARTICLE–FREE AIR BUBBLE INTERACTION IN LIQUID. J Min Sci 56, 990–999 (2020). https://doi.org/10.1134/S1062739120060113

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739120060113

Keywords

Navigation