Skip to main content
Log in

Hydraulic Fracturing Effect on Filtration Resistance in Gas Drainage Hole Area in Coal

  • Geomechanics
  • Published:
Journal of Mining Science Aims and scope

Abstract

Features of stress state and jointing as well as their effect on hydraulic fracture propagation direction in coal seams are considered. The flow resistance in drainage areas is analyzed depending on hydrofracture orientation, thickness of seams and spacing of holes. The comparison of one-stage and multi-stage hydrofractures created in-plane and orthogonally to hole axes is given. In simulated reservoir conditions, permeability of dense coal is studied without a fracture and with a through propped fracture subjected to confining pressure. The recommendations are developed for improving efficiency of gas drainage in coal seams based on in-mine hydraulic fracturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseev, A.D., Vasilenko, T.A., Gumennik, K.V., Kalugina, N.A., and Feldman, E.P., Diffusion–Filtration Model of Methane Yield from a Coal Seam, Zhurn. Tekhn. Fiz., 2007, vol. 77, no. 4, pp. 65–74.

    Google Scholar 

  2. Slastunov, S.V., Kolokov, K.S., and Puchkov, L.A., Izvlechenie metana iz ugol’nykh plastov (Methane Extraction from Coal Seams), Moscow: MGGU, 2002.

    Google Scholar 

  3. Instruktsiya po degazatsii ugol’nykh shakht (Coal Mine Degassing Guidelines) Series 05. Issue 22, Moscow: ZAO NTTSIPPB, 2012.

  4. Slastunov, S.V., Yutyaev, E.P., Mazanik, E.V., and Sadov, A.P., Development and Improvement of Coal Seam Degassing Technologies for Effective and Safe Mining of Coal Seams, GIAB, 2018, no. S49, pp. 13–22.

    Google Scholar 

  5. Jeffrey, R. G. and Boucher, C., Sand Propped Hydraulic Fracture Stimulation of Horizontal In-Seam Gas Drainage Holes at Dartbrook Coal Mine, Proc. of Coal Operators’ Conference, University of Wollongong & the Australasian Institute of Mining and Metallurgy, University of Wollongong, 2004.

    Google Scholar 

  6. Tatsienko, A.L. and Klishin, S.V., Occurrence of Transverse Fracture in Interval Hydraulic Fracturing of Coal Seam, GIAB, 2018, no. S49, pp. 49–57.

    Google Scholar 

  7. Kurlenya, M.V., Serdyukov, S.V., Patutin, A.V., and Shilova, T.V., Stimulation of Underground Degassing in Coal Seams by Hydraulic Fracturing Method, J. Min. Sci., 2017, vol. 53, no. 6, pp. 3–9.

    Article  Google Scholar 

  8. Kurlenya, M.V., Serdyukov, S.V., Shilova, T.V., and Patutin, A.V., Procedure and Equipment for Sealing Coal Bed Methane Drainage Holes by Barrier Shielding, J. Min. Sci., 2014, vol. 50, no. 5, pp. 203–210.

    Article  Google Scholar 

  9. Serdyukov, S.V., Degtyareva, N.V., Patutin, A.V., and Shilova, T.V., Open-Hole Multistage Hydraulic Fracturing System, J. Min. Sci., 2016, vol. 52, no. 6, pp. 180–186.

    Google Scholar 

  10. Azarov, A.V., Kurlenya, M.V., Serdyukov, S.V., and Patutin, A.V., Features of Hydraulic Fracturing Propagation near Free Surface in Isotropic Poroelastic Medium, J. Min. Sci., 2019, vol. 55, no. 1, pp. 3–11.

    Article  Google Scholar 

  11. Stolbova, N.F. and Isaeva, E.R., Petrologiya uglei (Petrology of Coals), Tomsk: TPU, 2013.

    Google Scholar 

  12. Popov, Yu.N., Tectonic Jointing of Coals and Enclosing Rocks in Leninsk District of Kuzbass, Izv. TPU, 1969, vol. 165, pp. 229–237.

    Google Scholar 

  13. Jeffrey, R., Hydraulic Fracturing Applied to Stimulation of Gas Drainage from Coal, Proc. of the AusIMM Illawarra Branch, 2002.

    Google Scholar 

  14. Nenasheva, R.I., Zykov, V.S., and Cheboksarov, B.B., Jointing Effect on the Preparation and Sequence of Mining Flat Coal Seams in Kuzbass, Vestn. KuzGTU, 2005, vol. 45, no. 1, pp. 35–38.

    Google Scholar 

  15. Kurlenya, M.V., Zvorygin, L.V., and Serdyukov, S.V., Control of Longitudinal Hydraulic Fracturing of Wells, J. Min. Sci., 1999, vol. 35, no. 5, pp. 3–12.

    Google Scholar 

  16. Burra A., Esterle J.S., and Golding S.D., Horizontal Stress Anisotropy and Effective Stress as Regulator of Coal Seam Gas Zonation in the Sydney Basin, Australia, Int. J. of Coal Geology, 2014, vol. 132, pp. 103–116.

    Article  Google Scholar 

  17. Liu, C., Distribution Laws of In-Situ Stress in Deep Underground Coal Mines, Procedia Engineering, 2011, vol. 26, pp. 909–917.

    Article  Google Scholar 

  18. Telkov, A.P. and Grachev, S.I., Gidromekhanika plasta primenitel’no k prikladnym zadacham razrabotki neftyanykh i gazovykh mestorozhdenii. Ucheb. posobie, chast’ II (Reservoir Hydromechanics Related to Applied Problems of Oil and Gas Fields Development. Study Guide, part II), Tyumen: TyumGNGU, 2009.

    Google Scholar 

  19. Kabirov, M.M. and Shamaev, G.A., Reshenie zadach pri proektirovanii razrabotki neftyanykh mestorozhdenii (Solving Problems in Designing Oil Fields Development), Ufa: UGNTU, 2003.

    Google Scholar 

  20. Renard, G. and Dupuy, J.M., Formation Damage Effects on Horizontal-Well Flow Efficiency, J. of Petroleum Technology, 1991, vol. 43, no. 7, pp. 786–869.

    Article  Google Scholar 

  21. Guo, G. and Evans, R.D., Inflow Performance of a Horizontal Well Intersecting Natural Fractures, Proc. of SPE Production Operations Symp., SPE 25501, 1993.

    Google Scholar 

  22. Borisov, Yu.P., Pilatovskii, V.P., and Tabakov, V.P., Razrabotka neftyanykh i gazovykh mestorozhdenii gorizontal’nymi i mnogozaboinymi skvazhinami (Oil and Gas Fields Development Using Horizontally Branched Wells), Moscow: Nedra, 1964.

    Google Scholar 

  23. Li, H., Jia, Z., and Wei, Z., A New Method to Predict Performance of Fractured Horizontal Wells, Proc. of Int. Conference on Horizontal Well Technology, SPE 37051, 1996.

    Google Scholar 

  24. Mazo, A.B., Potashev, K.A., and Khamidullin, M.R., Filtration Model of Fluid Inflow to Horizontal Borehole with Multistage Hydraulic Fracturing of the Seam, Uchen. Zap. Kazan. Univ., 2015, vol. 157, no. 4, pp. 133–148.

    Google Scholar 

  25. Pirverdyan, A.M., Fizika i gidravlika neftyanogo plasta (Oil Reservoir Physics and Hydraulics), Moscow: Nedra, 1982.

    Google Scholar 

  26. Lu, S., Cheng, Y., Ma, J., and Zhang, Y., Application of In-Seam Directional Drilling Technology for Gas Drainage with Benefits to Gas Outburst Control and Greenhouse Gas Reductions in Daning Coal Mine, China, Natural Hazards, 2014, vol. 73, no. 3, pp. 1419–1437.

    Article  Google Scholar 

  27. Serdyukov, S.V., Shilova, T.V., and Drobchik, A.N., Laboratory Installation and Procedure to Determine Gas Permeability of Rocks, J. Min. Sci., 2017, vol. 53, no. 5, pp. 172–180.

    Article  Google Scholar 

Download references

Funding

The study was supported by the Ministry of Education and Science of the Russian Federation, project no. RFMEFI60417X0172.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Serdyukov.

Additional information

Original Russian Text © The Author(s), 2019, published in Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2019, No. 2, pp. 3–13.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serdyukov, S.V., Kurlenya, M.V., Rybalkin, L.A. et al. Hydraulic Fracturing Effect on Filtration Resistance in Gas Drainage Hole Area in Coal. J Min Sci 55, 175–184 (2019). https://doi.org/10.1134/S1062739119025432

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739119025432

Keywords

Navigation