Skip to main content
Log in

Efficient Physicochemical Treatment Technology for Nepheline Concentrates

  • Mineral Dressing
  • Published:
Journal of Mining Science Aims and scope

Abstract

The processes of physicochemical treatment of nepheline concentrates are studied theoretically and experimentally, and the optimal conditions are determined for the integrated fluoride–ammonium recovery of different useful components. The enabling innovative technology is proposed for the production of amorphous silica, alumina, red iron oxide, calcium fluoride and other marketable products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Voitkevich, G.V. and Bessonov, O.A., Khimicheskaya evolyutsiya Zemli (Chemical Evolution of the Earth), Moscow: Nedra, 1986.

    Google Scholar 

  2. Sizyakov, V.M., Shmorgunenko, N.S., Smirnov, M.N., and Dantsit, S.Ya., Processes for Integrated Treatment of Alumosilica Rocks Intended for Production of Alumina and Other Products, Nefelinovoe syr’yo (Raw Nepheline Materials), Moscow: Nauka, 1981, pp. 289–309.

    Google Scholar 

  3. Zakharov, V.I., Kalinnikov, V.T., Matveev, V.A., and Maiorov, D.V., Khimiko-tekhnologicheskie osnovy i razrabotka novykh napravlenii kompleksnoi pererabotki i ispol’zovaniya shchelochnykh alyumosilikatov (Chemical and Technological Fundamentals and Development of Novel Trends in Integrated Processing and Utilization of Alkali Alumosicates), Apatity: KNTs RAN, 1995.

    Google Scholar 

  4. Matveev, V.A., Phosphoric Acid Process to Treat Nepheline-Bearing Materials, Khim. Tekhnologiya, 2008, no. 7, pp. 297–300.

    Google Scholar 

  5. Matveev, V.A., Perspectives to Apply Sulphuric Acid–Sulfite Process for Integrated Nepheline Processing, Tsv. Met., 2008, no. 9, pp. 47–50.

    Google Scholar 

  6. Makarov, D.V., Belyaevsky, A.T., Men’shikov, Yu.P., Nesterov, D.P., and Yusupov, M.F., A Study of the Mechanism and Kinetics of Interaction between Nepheline Powder and Ammonium Hydrofluoride, Russian Journal of Applied Chemistry, 2007, vol. 80, no. 2, pp. 175–180.

    Article  Google Scholar 

  7. Zhang, W., Hu, Z., Liu, Y., Chen, H., Gao, S., and Gaschnig, R.M., Total Rock Dissolution Using Ammonium Bifluoride (NH4HF2) in Screw-Top Teflon Vials: a New Development in Open-Vessel Digestion, Anal. Chem., 2012, vol. 84, no. 24, pp. 10686–10693.

    Article  Google Scholar 

  8. Rimkevich, V.S., Sorokin, A.P., and Girenko, I.V., Fluoride Technique to Process Cyanidte Concentrates with Integrated Recovery of Valuable Components, GIAB, 2014, no. 7, pp. 137–147.

    Google Scholar 

  9. Khalil, N.M., Agila, R., Othman, H.A., and Ewais, E.M., Improvement of the Extraction Efficiency of Nanosized Alumina from Libyan Clay, InterCeram, International Ceramic Review, 2009, vol. 58, no. 6, pp. 388–393.

    Google Scholar 

  10. Gulyuta, M.A., Andreev, V.A., Buinovsky, A.S., et al., Research of Activation of Persistent Uranium Ores by Ammonium Fluoride Solutions, Izv. TPU, 2014, vol. 324, no. 3, pp. 53–59.

    Google Scholar 

  11. Rimkevich, V.S., Sorokin, A.P., Pushkin, A.A., and Girenko, I.V., Integrated Processing Technology for Calcium-Bearing Alumosilicate Raw Material, J. Min. Sci., 2017, vol. 53, no. 4, pp. 762–770.

    Article  Google Scholar 

  12. Khimicheskaya tekhnologiya neorganicheskikh veshchestv (Chemical Technology of Inorganic Matter): Manual, ed. Akhmetova T.G., Moscow: Vyssh. Shkola, 2002.

  13. Melent’ev, G.B. and Delitsyn, L.M., Nepheline as Unique Raw Mineral-and-Chemical Material of the XXI Century: Mineral Resource and Environmental Challenges and Priorities in their Solution, Ekol. Prom. Proizv., 2004, no. 2, pp. 51–68.

    Google Scholar 

  14. Cherkasov, G.N., Prusevich, A.M., and Sukharina, A.M., Neboksitovoe alyuminievoe syr’yo Sibiri (Nonbauxite Aluminium-Bearing Material Reserves in Siberia), Moscow: Nedra, 1988.

    Google Scholar 

  15. Kratky spravochnik fiziko-khimicheskikh velichin (Concise Critical Tables), ed. Ravdel’ A.A. and Ponomareva A.M., Leningrad: Khimiya, 1983.

  16. Lidin, R.A., Andreeva, L.P., and Molochko, V.A., Spravochnik po neorganicheskoi khimii (Inorganic Chemistry Reference Book), Moscow: Khimiya, 1987.

    Google Scholar 

  17. Stromberg, A.G. and Semchenko, D.P., Fizicheskaya Khimiya (Physical Chemistry), Moscow: Khimiya, 1999.

    Google Scholar 

  18. Demyanova, L.P., Rimkevich, V.S., and Buynovskiy, A.S., Elaboration of Nanometric Amorphous Silica from Quartz-Based Minerals Using the Fluorination Method, J. of Fluorine Chemistry, 2011, Vol. 132, no. 12, pp. 1067–1071.

    Article  Google Scholar 

  19. D’yachenko, A.N. and Kraidenko, R.I., Fluorine-Ammonium Process to Separate Silicon–Iron–Copper–Nickel Concentrate into Discrete Oxides, Izv. TPU, 2007, vol. 311, no. 3, pp. 38–41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Rimkevich.

Additional information

Original Russian Text © V.S. Rimkevich, A.P. Sorokin, A.A. Pushkin, I.V. Girenko, 2018, published in Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2018, No. 2, pp. 136–145.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rimkevich, V.S., Sorokin, A.P., Pushkin, A.A. et al. Efficient Physicochemical Treatment Technology for Nepheline Concentrates. J Min Sci 54, 306–314 (2018). https://doi.org/10.1134/S1062739118023677

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739118023677

Keywords

Navigation