Skip to main content
Log in

Catecholaminergic Rat’s Forebrain Structures in Early Postnatal Development and Aging

  • MORPHOGENESIS
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

The aim of the research was to study morphological changes that occur in cortical catecholaminergic forebrain structures of Wistar rats during postnatal development. Rat’s forebrain sections at different stages of postnatal development (postnatal day 7, postnatal day 30, 4–6 months, and 23 months) were studied using immunohistochemistry methods. It has been shown that distinct cortical areas perform a unique distribution of catecholaminergic fibers due to their functional features. Age-related changes in density of the distribution of catecholaminergic fibers were analyzed, and it has been stated that the density of catecholaminergic fibers in the sensorimotor cortex increases with aging. It has been demonstrated that confocal laser scanning microscopy offers a wide variety of opportunities for qualitative and quantitative analysis of immunohistochemical results and can be a useful tool for tyrosine hydroxylase distribution studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Areal, L.B. and Blakely, R.D., Neurobehavioral changes arising from early life dopamine signaling perturbations, Neurochem. Int., 2020, vol. 137, p. 104747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arenas, E., Trupp, M., Åkerud, P., et al., GDNF prevents degeneration and promotes the phenotype of brain noradrenergic neurons in vivo, Neuron, 1995, vol. 15, no. 6, pp. 1465–1473.

    Article  CAS  PubMed  Google Scholar 

  3. Asmus, S.E., Anderson, E.K., Ball, M.W., et al., Neurochemical characterization of tyrosine hydroxylase-immunoreactive interneurons in the developing rat cerebral cortex, Brain Res., 2008, vol. 1222, pp. 95–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Asmus, S.E., Cocanougher, B.T., Allen, D.L., et al., Increasing proportions of tyrosine hydroxylase-immunoreactive interneurons colocalize with choline acetyltransferase or vasoactive intestinal peptide in the developing rat cerebral cortex, Brain Res., 2011, vol. 1383, pp. 108–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Asmus, S.E., Raghanti, M.A., Beyerle, E.R., et al., Tyrosine hydroxylase-producing neurons in the human cerebral cortex do not colocalize with calcium-binding proteins or the serotonin 3A receptor, J. Chem. Neuroanat., 2016, vol. 78, pp. 1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barishpolets, V.V., Fedotova, Yu.O., and Sapronov, N.S., Structural and functional organization of the dopaminergic system of the brain, Eksp. Klin. Farmakol., 2009, vol. 72, no. 3, pp. 44–49.

    CAS  PubMed  Google Scholar 

  7. Bell, K.F.S., Bennett, D.A., and Cuello, A.C., Paradoxical upregulation of glutamatergic presynaptic boutons during mild cognitive impairment, J. Neurosci., 2007, vol. 27, no. 40, pp. 10810–10817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Benavides-Piccione, R. and DeFelipe, J., Distribution of neurons expressing tyrosine hydroxylase in the human cerebral cortex, J. Anat., 2007, vol. 211, no. 2, pp. 212–222.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Berger, B., Verney, C., Febvret, A., et al., Postnatal ontogenesis of the dopaminergic innervation in the rat anterior cingulate cortex (area 24). Immunocytochemical and catecholamine fluorescence histochemical analysis, Brain Res., 1985, vol. 353, no. 1, pp. 31–47.

    Article  CAS  PubMed  Google Scholar 

  10. Berger, B., Verney, C., Gaspar, P., et al., Transient expression of tyrosine hydroxylase immunoreactivity in some neurons of the rat neocortex during postnatal development, Brain Res., 1985, vol. 355, no. 1, pp. 141–144.

    Article  CAS  PubMed  Google Scholar 

  11. Bissonette, G.B. and Roesch, M.R., Development and function of the midbrain dopamine system: what we know and what we need to, Genes Brain Behav., 2016, vol. 15, no. 1, pp. 62–73.

    Article  CAS  PubMed  Google Scholar 

  12. Björklund, A., Handbook of Chemical Neuroanatomy, vol. 21: Dopamine, Amsterdam: Elsevier, 1992.

    Google Scholar 

  13. Bonnin, A., Miguel, R., Castro, J.G., et al., Effects of perinatal exposure to delta 9-tetrahydrocannabinol on the fetal and early postnatal development of tyrosine hydroxylase-containing neurons in rat brain, J. Mol. Neurosci., 1996, vol. 7, no. 4, pp. 291–308.

    Article  CAS  PubMed  Google Scholar 

  14. Brownstein, M., Saavedra, J.M., and Palkovits, M., Norepinephrine and dopamine in the limbic system of the rat, Brain Res., 1974, vol. 79, no. 3, pp. 431–436.

    Article  CAS  PubMed  Google Scholar 

  15. Cardozo-Pelaez, F., Song, S., Parthasarathy, A., et al., Oxidative DNA damage in the aging mouse brain, Mov. Disord., 1999, vol. 14, no. 6, pp. 972–980.

    Article  CAS  PubMed  Google Scholar 

  16. Cools, R., Role of dopamine in the motivational and cognitive control of behavior, Neuroscientist, 2008, vol. 14, no. 4, pp. 381–395.

    Article  CAS  PubMed  Google Scholar 

  17. Fallon, J., Collateralization of monoamine neurons: mesotelencephalic dopamine projections to caudate, septum, and frontal cortex, J. Neurosci., 1981, vol. 1, no. 12, pp. 1361–1368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Finkel, T. and Holbrook, N.J., Oxidants, oxidative stress and the biology of ageing, Nature, 2000, vol. 408, no. 6809, pp. 239–247.

    Article  CAS  PubMed  Google Scholar 

  19. Gates, M.A., Torres, E.M., White, A., et al., Re-examining the ontogeny of substantia nigra dopamine neurons, Eur. J. Neurosci., 2006, vol. 23, no. 5, pp. 1384–1390.

    Article  PubMed  Google Scholar 

  20. Gogolla, N., The insular cortex, Curr. Biol., 2017, vol. 27, no. 12, pp. R580–R586.

    Article  CAS  PubMed  Google Scholar 

  21. Grigor’ev, I.P., Alekseeva, O.S., Kirik, O.V., et al., Distribution of low molecular weight proteins of neurofilaments in the cingulate cortex of the rat brain, Morfologiya, 2018, vol. 154, no. 5, pp. 7–12.

    Google Scholar 

  22. Grondin, R., Littrell, O.M., Zhang, Z., et al., GDNF revisited: a novel mammalian cell-derived variant form of GDNF increases dopamine turnover and improves brain biodistribution, Neuropharmacology, 2019, vol. 147, pp. 28–36.

    Article  CAS  PubMed  Google Scholar 

  23. Hamezah, H.S., Durani, L.W., Ibrahim, N.F., et al., Volumetric changes in the aging rat brain and its impact on cognitive and locomotor functions, Exp. Gerontol., 2017, vol. 99, pp. 69–79.

    Article  CAS  PubMed  Google Scholar 

  24. Kalinina, T.S. and Dygalo, N.N., Development of the noradrenergic system of the rat brain after prenatalexposure to corticosterone, Biol. Bull. (Moscow), 2013, vol. 40, no. 6, pp. 545–549.

    Article  CAS  Google Scholar 

  25. Kalinina, T.S., Shishkina, G.T., and Dygalo, N.N., Induction of tyrosine hydroxylase gene expression by glucocorticoids in the perinatal rat brain is age-dependent, Neurochem. Res., 2012, vol. 37, no. 4, pp. 811–818.

    Article  CAS  PubMed  Google Scholar 

  26. Kortz, M.W. and Lillehei, K.O., Insular Cortex, FL: StatPearls Publishing, 2021.

  27. Korzhevskii, D.E., Sukhorukova, E.G., Kirik, O.V., et al., Immunohistochemical demonstration of specific antigens in the human brain fixed in zinc–ethanol–formaldehyde, Eur. J. Histochem., 2015, vol. 59, no. 3, pp. 5–9.

    Article  CAS  Google Scholar 

  28. Latsari, M., Dori, I., Antonopoulos, J., et al., Noradrenergic innervation of the developing and mature visual and motor cortex of the rat brain: a light and electron microscopic immunocytochemical analysis, J. Comp. Neurol., 2002, vol. 445, no. 2, pp. 145–158.

    Article  PubMed  Google Scholar 

  29. Levitt, P. and Moore, R.Y., Development of the noradrenergic innervation of neocortex, Brain Res., 1979, vol. 162, no. 2, pp. 243–259.

    Article  CAS  PubMed  Google Scholar 

  30. Livneh, Y. and Andermann, M.L., Cellular activity in insular cortex across seconds to hours: sensations and predictions of bodily states, Neuron, 2021, vol. 109, pp. 1–18.

    Article  CAS  Google Scholar 

  31. Luo, Y. and Roth, G.S., The roles of dopamine oxidative stress and dopamine receptor signaling in aging and age-related neurodegeneration, Antioxid. Redox Signal., 2004, vol. 2, no. 3, pp. 449–460.

    Article  Google Scholar 

  32. Matsunaga, W., Isobe, K., and Shirokawa, T., Involvement of neurotrophic factors in aging of noradrenergic innervations in hippocampus and frontal cortex, Neurosci. Res., 2006, vol. 54, no. 4, pp. 313–318.

    Article  CAS  PubMed  Google Scholar 

  33. Nomura, S., Bouhadana, M., Morel, C., et al., Noradrenalin and dopamine receptors both control cAMP-PKA signaling throughout the cerebral cortex, Front. Cell. Neurosci., 2014, vol. 8, article ID 247.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Norrara, B., Fiuza, F.P., Arrais, A.C., et al., Pattern of tyrosine hydroxylase expression during aging of mesolimbic pathway of the rat, J. Chem. Neuroanat., 2018, vol. 92, pp. 83–91.

    Article  CAS  PubMed  Google Scholar 

  35. Ohara, P.T., Granato, A., Moallem, T.M., et al., Dopaminergic input to GABAergic neurons in the rostral agranular insular cortex of the rat, J. Neurocytol., 2003, vol. 32, no. 2, pp. 131–141.

    Article  CAS  PubMed  Google Scholar 

  36. Reynolds, L.M. and Flores, C., Mesocorticolimbic dopamine pathways across adolescence: diversity in development, Front. Neural Circuits, 2021, vol. 15, pp. 94–111.

    Article  CAS  Google Scholar 

  37. Reynolds, L.M., Pokinko, M., Torres-Berrío, A., et al., Dcc receptors drive prefrontal cortex maturation by determining dopamine axon targeting in adolescence, Biol. Psychiatry, 2018, vol. 83, no. 2, pp. 181–192.

    Article  CAS  PubMed  Google Scholar 

  38. Rushworth, M.F.S., Noonan, M.A.P., Boorman, E.D., et al., Frontal cortex and reward-guided learning and decision-making, Neuron, 2011, vol. 70, no. 6, pp. 1054–1069.

    Article  CAS  PubMed  Google Scholar 

  39. Satoh, J. and Suzuki, K., Tyrosine hydroxylase-immunoreactive neurons in the mouse cerebral cortex during the postnatal period, Brain Res. Dev. Brain Res, 1990, vol. 53, no. 1, pp. 1–5.

    Article  CAS  PubMed  Google Scholar 

  40. Sukhareva, E.V., Kalinina, T.S., Bulygina, V.V., et al., Brain tyrosine hydroxylase and its regulation by glucocorticoids, Vavilov. Zh. Genet. Sel., 2016, vol. 20, no. 2, pp. 212–219.

    Google Scholar 

  41. Sukhorukova, E.G., Alekseeva, O.S., and Korzhevskii, D.E., Mammalian brain catecholaminergic neurons and neuromelanin, Zh. Evol. Biokhim. Fiziol., 2014, vol. 50, no. 5, pp. 336–342.

    CAS  PubMed  Google Scholar 

  42. Tremblay, R., Lee, S., and Rudy, B., GABAergic interneurons in the neocortex: from cellular properties to circuits, Neuron, 2016, vol. 91, no. 2, pp. 260–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ugrumov, M.V., Synthesis of monoamines by non-monoaminergic neurons: illusion or reality?, Fiziol. Zh. im. I.M. Sechenova, 2009, vol. 95, no. 3, pp. 273–282.

    CAS  Google Scholar 

  44. Ugrumov, M.V., Taxi, J., Tixier-Vidal, A., et al., Ontogenesis of tyrosine hydroxylase-immunopositive structures in the rat hypothalamus. An atlas of neuronal cell bodies, Neuroscience, 1989, vol. 29, no. 1, pp. 135–156.

    Article  CAS  PubMed  Google Scholar 

  45. Ugrumov, M.V., Melnikova, V., Ershov, P., et al., Tyrosine hydroxylase- and/or aromatic l-amino acid decarboxylase-expressing neurons in the rat arcuate nucleus: ontogenesis and functional significance, Psychoneuroendocrinology, 2002, vol. 27, no. 5, pp. 533–548.

    Article  CAS  PubMed  Google Scholar 

  46. Vogt, B.A., Vogt, L., and Farber, N.B., Cingulate cortex and disease models, in The Rat Nervous System, New York: Elsevier, 2004, Chapter 22, pp. 705–727.

    Google Scholar 

  47. Voorn, P., Kalsbeek, A., Jorritsma-Byham, B., et al., The pre- and postnatal development of the dopaminergic cell groups in the ventral mesencephalon and the dopaminergic innervation of the striatum of the rat, Neuroscience, 1988, vol. 25, no. 3, pp. 857–887.

    Article  CAS  PubMed  Google Scholar 

  48. Weihe, E., Depboylu, C., Schutz, B., et al., Three types of tyrosine hydroxylase-positive CNS neurons distinguished by DOPA decarboxylase and VMAT2 co-expression, Cell. Mol. Neurobiol., 2006, vol. 26, no. 4, pp. 657–676.

    Article  CAS  Google Scholar 

  49. Weiss, B., Greenberg, L., and Cantor, E., Age-related alterations in the development of adrenergic denervation supersensitivity, Fed. Proc., 1979, vol. 38, no. 5, pp. 1915–1921.

    CAS  PubMed  Google Scholar 

  50. Zaman, V., Li, Z., Middaugh, L., et al., The noradrenergic system of aged GDNF heterozygous mice, Cell Transplant., 2003, vol. 12, no. 3, pp. 291–303.

    Article  PubMed  Google Scholar 

Download references

Funding

The work was carried out within the framework of the state task of the Federal State Budgetary Scientific Institution “Institute of Experimental Medicine.”

Author information

Authors and Affiliations

Authors

Contributions

V.A. Razenkova: taking material, wiring and pouring into paraffin blocks, staining preparations, photographing and analyzing preparations, statistical analysis of the obtained preparations, working with drawings, writing the text of the article. D.E. Korzhevskii: design of the experiment, work with drawings and writing the text of the article.

Corresponding author

Correspondence to V. A. Razenkova.

Ethics declarations

Conflict of interest. The authors declare they have no conflicts of interest.

Statement on the welfare of animals. During the study, all applicable international, national, and institutional (conclusion no. 1/20 dated February 27, 2020, of the local ethics committee of the IEM) principles of care and use of animals were observed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razenkova, V.A., Korzhevskii, D.E. Catecholaminergic Rat’s Forebrain Structures in Early Postnatal Development and Aging. Russ J Dev Biol 53, 208–216 (2022). https://doi.org/10.1134/S1062360422030067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360422030067

Keywords:

Navigation