Skip to main content
Log in

Evolutionary and Ontogenetic Plasticity of Conserved Signaling Pathways in Animals’ Development

  • REVIEWS
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

The view that the signaling pathways involved in the regulation of animals’ key developmental processes (body axis formation, germ layers’ specification, embryonic induction) are highly conservative, dominates in Evolutionary Developmental Biology (EvoDevo). At the same time, there are many pieces of evidence that these signaling pathways are extremely flexible. In this review, the evolutionary and ontogenetic plasticity of signaling cascades operating in the development of several model species are analyzed. Studies of the plasticity of molecular mechanisms of regulation of ontogenesis are necessary for understanding the basic principles of animal evolution as well as for the introduction and improvement of applied biomedical technologies. This review will allow readers to look at the concept of “conservatism” of molecular regulatory mechanisms in animal ontogeny and evolution from different angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Anderson, C. and Stern, C.D., Organizers in development, Curr. Top. Dev. Biol., 2016, vol. 117, pp. 435–454.

    Article  PubMed  Google Scholar 

  2. Bachiller, D., Klingensmith, J., Shneyder, N., Tran, U., Anderson, R., Rossant, J., and De Robertis, E.M., The role of chordin/Bmp signals in mammalian pharyngeal development and DiGeorge syndrome, Development, 2003, vol. 130, no. 15, pp. 3567–3578.

    Article  CAS  PubMed  Google Scholar 

  3. Bier, E. and De Robertis, E.M., Bmp gradients: a paradigm for morphogen-mediated developmental patterning, Science, 2015, vol. 348, no. 6242, pp. 1–12.

    Article  CAS  Google Scholar 

  4. Boyle, M.J. and Seaver, E.C., Expression of FoxA and GATA transcription factors correlates with regionalized gut development in two lophotrochozoan marine worms: Chaetopterus (Annelida) and Themiste lageniformis (Sipuncula), EvoDevo, 2010, vol. 1, pp. 1–18.

    Article  CAS  Google Scholar 

  5. Brekhman, V., Malik, A., Haas, B., She, N., and Lotan, T., Transcriptome profiling of the dynamic life cycle of the scypohozoan jellyfish Aurelia aurita, BMC Genomics, 2015, vol. 16, no. 1, pp. 1–15.

    Article  CAS  Google Scholar 

  6. Carroll, S.B., Endless forms: the evolution of gene regulation and morphological diversity, Cell, 2000, vol. 101, no. 6, pp. 577–580.

    Article  CAS  PubMed  Google Scholar 

  7. Cary, G.A. and Hinman, V.F., Echinoderm development and evolution in the post-genomic era, Dev. Biol., 2017, vol. 427, no. 2, pp. 203–211.

    Article  CAS  PubMed  Google Scholar 

  8. Chapman, J.A., Kirkness, E.F., Simakov, O., Hampson, S.E., Mitros, T., Weinmaier, T., Rattei, T., Balasubramanian, P.G., Borman, J., Busam, D., and Disbennett, K., The dynamic genome of Hydra, Nature, 2010, vol. 464, no. 7288, pp. 592–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chizhikov, V.V. and Millen, K.J., Roof plate-dependent patterning of the vertebrate dorsal central nervous system, Dev. Biol., 2005, vol. 277, pp. 287–295.

    Article  CAS  PubMed  Google Scholar 

  10. Christen, B. and Slack, J.M., All limbs are not the same, Nature, 1998, vol. 395, no. 6699, p. 230.

    Article  CAS  PubMed  Google Scholar 

  11. Cleuren, Y.N.T., Ewe, C.K., Chipman, K.C., Mears, E.R., Wood, C.G., Al-Alami, C.E.A., Alcorn, M.R., Turner, T.L., Joshi, P.M., Snell, R.G., and Rothman, J.H., Extensive intraspecies cryptic variation in an ancient embryonic gene regulatory network, Elife, 2019, vol. 8, art. ID e48220.

    Article  CAS  Google Scholar 

  12. Cohen, M., Briscoe, J., and Blassberg, R., Morphogen interpretation: the transcriptional logic of neural tube patterning, Curr. Opin. Genet. Dev., 2013, vol. 23, pp. 423–428.

    Article  CAS  PubMed  Google Scholar 

  13. Davidson, E.H., Rast, J.P., Oliveri, P., Ransick, A., Calestani, C., Yuh, C.H., Minokawa, T., Amore, G., Hinman, V., Arenas-Mena, C., Otim, O., Brown, C.T., Livi, C.B., Lee, P.Y., Revilla, R., Schilstra, M.J., Clarke, P.J., Rust, A.G., Pan, Z., Arnone, M.I., Rowen, L., Cameron, R.A., McClay, D.R., Hood, L., and Bolouri, H., A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo, Dev. Biol., 2002, vol. 246, pp. 162–190.

    Article  CAS  PubMed  Google Scholar 

  14. Demers, C.J., Soundararajan, P., Chennampally, P., Cox, G.A., Briscoe, J., Collins, S.D., and Smith, R.L., Development-on-chip: in vitro neural tube patterning with a microfluidic device, Development, 2016, vol. 143, no. 11, pp. 1884–1892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dineen, A., Osborne, N.E., Goszczynski, B., Rothman, J.H., and McGhee, J.D., Quantitating transcription factor redundancy: the relative roles of the ELT-2 and ELT-7 GATA factors in the C. elegans endoderm Dev. Biol., 2018, vol. 435, pp. 150–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Le Douarin, N.M. and Halpern, M.E., Discussion point. Origin and specification of the neural tube floor plate: insights from the chick and zebrafsh, Curr. Opin. Neurobiol., 2000, vol. 10, pp. 23–30.

    Article  CAS  PubMed  Google Scholar 

  17. Echelard, Y., Epstein, D.J., St-Jacques, B., Shen, L., Mohler, J., McMahon, J.A., and McMahon, A.P., Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity, Cell, 1993, vol. 75, no. 7, pp. 1417–1430.

    Article  CAS  PubMed  Google Scholar 

  18. Ereskovsky, A.V., Renard, E., and Borchiellini, C., Cellular and molecular processes leading to embryo formation in sponges: evidences for high conservation of processes throughout animal evolution, Dev. Gen. Evol., 2013, vol. 223, nos. 1–2, pp. 5–22.

    Article  CAS  Google Scholar 

  19. Ewe, C.K., Torres Cleuren, Y.N., and Rothman, J.H., Evolution and developmental system drift in the endoderm gene regulatory network of Caenorhabditis and other nematodes, Front. Cell Dev. Biol., 2020, vol. 8, p. 170.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Félix, M.A. and Wagner, A., Robustness and evolution: concepts, insights and challenges from a developmental model system, Heredity, 2008, vol. 100, pp. 132–140.

    Article  PubMed  Google Scholar 

  21. Finnerty, J.R., Pang, K., Burton, P., Paulson, D., and Martindale, M.Q., Origins of bilateral symmetry: Hox and dpp expression in a sea anemone, Science, 2004, vol. 304, no. 5675, pp. 1335–1337.

    Article  CAS  PubMed  Google Scholar 

  22. Gavino, M.A. and Reddien, P.W., A Bmp/Admp regulatory circuit controls maintenance and regeneration of dorsal-ventral polarity in planarians, Curr. Biol., 2011, vol. 21, no. 4, pp. 294–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Genikhovich, G., How do developmental programs evolve?, in Old Questions and Young Approaches to Animal Evolution, Cham: Springer, 2019, pp. 73–106.

    Google Scholar 

  24. Genikhovich, G. and Technau, U., On the evolution of bilaterality, Development, 2017, vol. 144, no. 19, pp. 3392–3404.

    Article  CAS  PubMed  Google Scholar 

  25. Genikhovich, G., Fried, P., Prünster, M.M., Schinko, J.B., Gilles, A.F., Fredman, D., Meier, K., Iber, D., and Technau, U., Axis patterning by BMPs: cnidarian network reveals evolutionary constraints, Cell Rep., 2015, vol. 10, no. 10, pp. 1646–1654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gline, S.E., Kuo, D.H., Stolfi, A., and Weisblat, D.A., High resolution cell lineage tracing reveals developmental variability in leech, Dev. Dyn., 2009, vol. 238, no. 12, pp. 3139–3151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Goulding, M., Lanuza, G., Sapir, T., and Narayan, S., The formation of sensorimotor circuits, Curr. Opin. Neurobiol., 2002, vol. 12, pp. 508–515.

    Article  CAS  PubMed  Google Scholar 

  28. Halpern, M.E., Ho, R.K., Walker, C., and Kimmel, C.B., Induction of muscle pioneers and floor plate is distinguished by the zebrafsh no tail mutation, Cell, 1993, vol. 75, pp. 99–111.

    Article  CAS  PubMed  Google Scholar 

  29. Hamburger, V. and Hamilton, H.L., A series of normal stages in the development of the chick embryo, J. Morphol., 1951, vol. 88, no. 1, pp. 49–92.

    Article  CAS  PubMed  Google Scholar 

  30. Hayward, D.C., Samuel, G., Pontynen, P.C., Catmull, J., Saint, R., Miller, D.J., and Ball, E.E., Localized expression of a dpp/BMP2/4 ortholog in a coral embryo, Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 99, no. 12, pp. 8106–8111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang, F.Z. and Weisblat, D.A., Cell fate determination in an annelid equivalence group, Development, 1996, vol. 122, no. 6, pp. 1839–1847.

    Article  CAS  PubMed  Google Scholar 

  32. Ishihara, K., Ranga, A., Lutolf, M.P., Tanaka, E.M., and Meinhardt, A., Reconstitution of a patterned neural tube from single mouse embryonic stem cells, in Organ Regeneration, New York: Humana Press, 2017, pp. 43–55.

    Google Scholar 

  33. Jeong, J. and McMahon, A.P., Growth and pattern of the mammalian neural tube are governed by partially overlapping feedback activities of the hedgehog antagonists patched 1 and Hhip1, Development, 2005, vol. 132, no. 1, pp. 143–154.

    Article  CAS  PubMed  Google Scholar 

  34. Jessell, T.M., Neuronal specification in the spinal cord: inductive signals and transcriptional codes, Nat. Rev. Genet., 2000, vol. 1, no. 1, pp. 20–29.

    Article  CAS  PubMed  Google Scholar 

  35. Kherdjemil, Y., Lalonde, R.L., Sheth, R., Dumouchel, A., de Martino, G., Pineault, K.M., Wellik, D.M., Stadler, H.S., Akimenko, M.A., and Kmita, M., Evolution of Hoxa11 regulation in vertebrates is linked to the pentadactyl state, Nature, 2016, vol. 539, no. 7627, p. 89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kraus, J.E., Fredman, D., Wang, W., Khalturin, K., and Technau, U., Adoption of conserved developmental genes in development and origin of the medusa body plan, EvoDevo, 2015, vol. 6, no. 1, pp. 1–15.

    Article  Google Scholar 

  37. Kremnyov, S., Henningfeld, K., Viebahn, C., and Tsikolia, N., Divergent axial morphogenesis and early shh expression in vertebrate prospective floor plate, EvoDevo, 2018, vol. 9, no. 1, pp. 1–17.

    Article  Google Scholar 

  38. Kuo, D.H. and Shankland, M., Evolutionary diversification of specification mechanisms within the O/P equivalence group of the leech genus Helobdella, Development, 2004, vol. 131, no. 23, pp. 5859–5869.

    Article  CAS  PubMed  Google Scholar 

  39. Kuo, D.H. and Weisblat, D.A., A new molecular logic for BMP-mediated dorsoventral patterning in the leech Helobdella, Curr. Biol., 2011, vol. 21, no. 15, pp. 1282–1288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Leclère, L., Horin, C., Chevalier, S., Lapébie, P., Dru, P., Péron, S., Jager, M., Condamine, T., Pottin, K., Romano, S., and Steger, J., The genome of the jellyfish Clytia hemisphaerica and the evolution of the cnidarian life-cycle, Nat. Ecol. Evol., 2019, vol. 3, no. 5, pp. 801–810.

    Article  PubMed  Google Scholar 

  41. Levine, M. and Tjian, R., Transcription regulation and animal diversity, Nature, 2003, vol. 424, no. 6945, p. 147.

    Article  CAS  PubMed  Google Scholar 

  42. Liem, K.F., Jr., Tremml, G., Roelink, H., and Jessell, T.M., Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm, Cell, 1995, vol. 82, pp. 969–979.

    Article  CAS  PubMed  Google Scholar 

  43. Lin, K.T.H., Broitman-Maduro, G., Hung, W.W., Cervantes, S., and Maduro, M.F., Knockdown of SKN-1 and the Wnt effector TCF/POP-1 reveals differences in endomesoderm specification in C. briggsae as compared with C. elegans, Dev. Biol., 2009, vol. 325, no. 1, pp. 296–306.

    Article  CAS  PubMed  Google Scholar 

  44. Lopez-Sanchez, C., Garcia-Martinez, V., and Schoenwolf, G.C., Localization of cells of the prospective neural plate, heart and somites within the primitive streak and epiblast of avian embryos at intermediate primitive-streak stages, Cells Tissues Organs, 2001, vol. 169, pp. 334–346.

    Article  CAS  PubMed  Google Scholar 

  45. Martindale, M.Q., Pang, K., and Finnerty, J.R., Investigating the origins of triploblasty: ‘mesodermal’ gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa), Development, 2004, vol. 131, pp. 2463–2474.

    Article  CAS  PubMed  Google Scholar 

  46. Megason, S.G. and McMahon, A.P., A mitogen gradient of dorsal midline Wnts organizes growth in the CNS, Development, 2002, vol. 129, pp. 2087–2098.

    Article  CAS  PubMed  Google Scholar 

  47. Milloz, J., Duveau, F., Nuez, I., and Félix, M.A., Intraspecific evolution of the intercellular signaling network underlying a robust developmental system, Genes Dev., 2008, vol. 22, pp. 3064–3075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Molina, M.D., Neto, A., Maeso, I., Gómez-Skarmeta, J.L., Saló, E., and Cebrià, F., Noggin and noggin-like genes control dorsoventral axis regeneration in planarians, Curr. Biol., 2011, vol. 21, no. 4, pp. 300–305.

    Article  CAS  PubMed  Google Scholar 

  49. Nunes, M.D., Arif, S., Schlötterer, C., and McGregor, A.P., A perspective on micro-evo-devo: progress and potential, Genetics, 2013, vol. 195, pp. 625–634.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Oliveri, P., Tu, Q., and Davidson, E.H., Global regulatory logic for specification of an embryonic cell lineage, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, pp. 5955–5962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Owraghi, M., Broitman-Maduro, G., Luu, T., Roberson, H., and Maduro, M.F., Roles of the Wnt effector POP-1/TCF in the C. elegans endomesoderm specification gene network, Dev. Biol., 2010, vol. 340, pp. 209–221.

    Article  CAS  PubMed  Google Scholar 

  52. Özüak, O., Buchta, T., Roth, S., and Lynch, J.A., Ancient and diverged TGF-β signaling components in Nasonia vitripennis, Dev. Genes Evol., 2014a, vol. 224, nos. 4–6, pp. 223–233.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Özüak, O., Buchta, T., Roth, S., and Lynch, J.A., Dorsoventral polarity of the Nasonia embryo primarily relies on a BMP gradient formed without input from Toll, Curr. Biol., 2014b, vol. 24, no. 20, pp. 2393–2398.

    Article  PubMed  CAS  Google Scholar 

  54. Patten, I., Kulesa, P., Shen, M.M., Fraser, S., and Placzek, M., Distinct modes of floor plate induction in the chick embryo, Development, 2003, vol. 130, pp. 4809–4821.

    Article  CAS  PubMed  Google Scholar 

  55. Pechmann, M., Kenny, N.J., Pott, L., Heger, P., Chen, Y.T., Buchta, T., Özüak, O., Lynch, J., and Roth, S., Striking parallels between dorsoventral patterning in Drosophila and Gryllus reveal a complex evolutionary history behind a model gene regulatory network, Elife, 2021, vol. 10, art. ID e68287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Peter, I.S. and Davidson, E.H., Evolution of gene regulatory networks controlling body plan development, Cell, 2011, vol. 144, pp. 970–985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Peter, I.S. and Davidson, E.H., Assessing regulatory information in developmental gene regulatory networks, Proc. Natl. Acad. Sci. U. S. A., 2017, vol. 114, pp. 5862–5869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Peterson, K.J. and Davidson, E.H., Regulatory evolution and the origin of the bilaterians, Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, no. 9, pp. 4430–4433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Petersen, C.P. and Reddien, P.W., Wnt signaling and the polarity of the primary body axis, Cell, 2009, vol. 139, no. 6, pp. 1056–1068.

    Article  CAS  PubMed  Google Scholar 

  60. Peterson, K.J., Lyons, J.B., Nowak, K.S., Takacs, C.M., Wargo, M.J., and McPeek, M.A., Estimating metazoan divergence times with a molecular clock, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, pp. 6536–6541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Peterson, K.A., Nishi, Y., Ma, W., Vedenko, A., Shokri, L., Zhang, X., McFarlane, M., Baizabal, J.M., Junker, J.P., van Oudenaarden, A., Mikkelsen, T., Bernstein, B.E., Bailey, T.L., Bulyk, M.L., Wong, W.H., and McMahon, A.P., Neural-specific Sox2 input and differential Gli-binding affinity provide context and positional information in Shh-directed neural patterning, Genes Dev., 2012, vol. 26, pp. 2802–2816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Peyrot, S.M., Wallingford, J.B., and Harland, R.M., A revised model of Xenopus dorsal midline development: differential and separable requirements for Notch and Shh signaling, Dev. Biol., 2011, vol. 352, pp. 254–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Phillips, B.T., Kidd, A.R., King, R., Hardin, J., and Kimble, J., Reciprocal asymmetry of SYS-1/beta-catenin and POP-1/TCF controls asymmetric divisions in Caenorhabditis elegans, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, pp. 3231–3236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Phinchongsakuldit, J., Mac Arthur, S., and Brookfield, J.F., Evolution of developmental genes: molecular microevolution of enhancer sequences at the ubx locus in Drosophila and its impact on developmental phenotypes, Mol. Biol. Evol., 2004, vol. 21, pp. 348–363.

    Article  CAS  PubMed  Google Scholar 

  65. Ranga, A., Girgin, M., Meinhardt, A., Eberle, D., Caiazzo, M., Tanaka, E.M., and Lutolf, M.P., Neural tube morphogenesis in synthetic 3D microenvironments, Proc. Natl. Acad. Sci. U. S. A., 2016, vol. 113, no. 44, pp. E6831–E6839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Reber-Muller, S., Streitwolf-Engel, R., Yanze, N., Schmid, V., Stierwald, M., Erb, M., and Seipel, K., BMP2/4 and BMP5-8 in jellyfish development and transdifferentiation, Int. J. Dev. Biol., 2004, vol. 50, no. 4, pp. 377–384.

    Article  CAS  Google Scholar 

  67. Reinhardt, B., Broun, M., Blitz, I.L., and Bode, H.R., HyBMP5-8b, a BMP5-8 orthologue, acts during axial patterning and tentacle formation in Hydra, Dev. Biol., 2004, vol. 267, no. 1, pp. 43–59.

    Article  CAS  PubMed  Google Scholar 

  68. Rentzsch, F., Anton, R., Saina, M., Hammerschmidt, M., Holstein, T.W., and Technau, U., Asymmetric expression of the BMP antagonists chordin and gremlin in the sea anemone Nematostella vectensis: implications for the evolution of axial patterning, Dev. Biol., 2006, vol. 296, no. 2, pp. 375–387.

    Article  CAS  PubMed  Google Scholar 

  69. Rentzsch, F., Guder, C., Vocke, D., Hobmayer, B., and Holstein, T.W., An ancient chordin-like gene in organizer formation of Hydra, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, no. 9, pp. 3249–3254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Reversade, B. and De Robertis, E.M., Regulation of ADMP and BMP2/4/7 at opposite embryonic poles generates a self-regulating morphogenetic field, Cell, 2005, vol. 123, no. 6, pp. 1147–1160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Riddle, R.D., Johnson, R.L., Laufer, E., and Tabin, C., Sonic hedgehog mediates the polarizing activity of the ZPA, Cell, 1993, vol. 75, no. 7, pp. 1401–1416.

    Article  CAS  PubMed  Google Scholar 

  72. Saina, M., Genikhovich, G., Renfer, E., and Technau, U., BMPs and chordin regulate patterning of the directive axis in a sea anemone, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, no. 44, pp. 18592–18597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schauerte, H.E., van Eeden, F.J., Fricke, C., Odenthal, J., Strahle, U., and Hafter, P., Sonic hedgehog is not required for the induction of medial foor plate cells in the zebrafsh, Development, 1998, vol. 125, pp. 2983–2993.

    Article  CAS  PubMed  Google Scholar 

  74. Seki, R., Li, C., Fang, Q., Hayashi, S., Egawa, S., Hu, J., Xu, L., Pan, H., Kondo, M., Sato, T., and Matsubara, H., Functional roles of Aves class-specific cis-regulatory elements on macroevolution of bird-specific features, Nat. Commun., 2017, vol. 8, p. 14229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shih, J. and Fraser, S.E., Characterizing the zebrafsh organizer: microsurgical analysis at the early-shield stage, Development, 1996, vol. 122, pp. 1313–1322.

    Article  CAS  PubMed  Google Scholar 

  76. Shilo, B.Z., Haskel-Ittah, M., Ben-Zvi, D., Schejter, E.D., and Barkai, N., Creating gradients by morphogen shuttling, Trends Genet., 2013, vol. 29, no. 6, pp. 339–347.

    Article  CAS  PubMed  Google Scholar 

  77. Shimeld, S.M., The evolution of the hedgehog gene family in chordates: insights from amphioxus hedgehog, Dev. Genes Evol., 1999, vol. 209, pp. 40–47.

    Article  CAS  PubMed  Google Scholar 

  78. Shoichet, S.A., Malik, T.H., Rothman, J.H., and Shivdasani, R.A., Action of the Caenorhabditis elegans GATA factor END-1 in Xenopus suggests that similar mechanisms initiate endoderm development in ecdysozoa and vertebrates, Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, pp. 4076–4081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Smith, J.L. and Schoenwolf, G.C., Notochordal induction of cell wedging in the chick neural plate and its role in neural tube formation, J. Exp. Zool., 1989, vol. 250, no. 1, pp. 49–62.

    Article  CAS  PubMed  Google Scholar 

  80. Sommermann, E.M., Strohmaier, K.R., Maduro, M.F., and Rothman, J.H., Endoderm development in Caenorhabditis elegans: the synergistic action of ELT-2 and -7 mediates the specification → differentiation transition, Dev. Biol., 2010, vol. 347, pp. 154–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Van Straaten, H.W.M., Hekking, J.W.M., Wiertz-Hoessels, E.J.L.M., Thors, F., and Drukker, J., Effect of the notochord on the differentiation of a floor plate area in the neural tube of the chick embryo, Anat. Embryol., 1988, vol. 177, no. 4, pp. 317–324.

    Article  CAS  Google Scholar 

  82. Sulston, J.E., Albertson, D.G., and Thomson, J.N., The Caenorhabditis elegans male: postembryonic development of nongonadal structures, Dev. Biol., 1980, vol. 78, pp. 542–576.

    Article  CAS  PubMed  Google Scholar 

  83. Takatori, N., Satou, Y., and Satoh, N., Expression of hedgehog genes in Ciona intestinalis embryos, Mech. Dev., 2002, vol. 116, pp. 235–238.

    Article  CAS  PubMed  Google Scholar 

  84. Tan, S., Huan, P., and Liu, B., Expression patterns indicate that BMP2/4 and Chordin, not BMP5-8 and Gremlin, mediate dorsal–ventral patterning in the mollusk Crassostrea gigas, Dev. Genes Evol., 2017, vol. 227, no. 2, pp. 75–84.

    Article  CAS  PubMed  Google Scholar 

  85. Wang, Y.C. and Ferguson, E.L., Spatial bistability of Dpp-receptor interactions during Drosophila dorsal–ventral patterning, Nature, 2005, vol. 434, no. 7030, pp. 229–234.

    Article  CAS  PubMed  Google Scholar 

  86. Watanabe, H., Schmidt, H.A., Kuhn, A., Höger, S.K., Kocagöz, Y., Lumann-Lipp, N., Özbek, S., and Holstein, T.W., Nodal signalling determines biradial asymmetry in Hydra, Nature, 2014, vol. 515, no. 7525, pp. 112–115.

    Article  CAS  PubMed  Google Scholar 

  87. Weisblat, D.A. and Shankland, M., Cell lineage and segmentation in the leech, Philos. Trans. R. Soc., B, 1985, vol. 312, no. 1153, pp. 39–56.

  88. Weisblat, D.A., Kim, S.Y., and Stent, G.S., Embryonic origins of cells in the leech Helobdella triserialis, Dev. Biol., 1984, vol. 104, no. 1, pp. 65–85.

    Article  CAS  PubMed  Google Scholar 

  89. Willmore, K.E., The body plan concept and its centrality in evo-devo, Evol.: Educat. Outreach, 2012, vol. 5, no. 2, pp. 219–230.

    Google Scholar 

Download references

Funding

The work was carried out with the support of the Russian Foundation for Basic Research, Expansion grant, no. 20-14-50526. The work was performed within the framework of the State Assignment of the Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 2021, no. SA 0088-2021-0009 and the scientific project of the State Assignment of Moscow State University, no. 121032300066-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kremnev.

Ethics declarations

The author declares that he has no conflicts of interest. This article does not contain any studies involving animals or human participants performed by the author.

Additional information

Translated by A. Ermakov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kremnev, S.V. Evolutionary and Ontogenetic Plasticity of Conserved Signaling Pathways in Animals’ Development. Russ J Dev Biol 53, 65–81 (2022). https://doi.org/10.1134/S1062360422020114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360422020114

Keywords:

Navigation