Skip to main content
Log in

Assisted reproductive technologies and arterial hypertension

  • Reviews
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

The effects of assisted reproductive technologies on the development of hypertensive phenotype were reviewed. Special attention was paid to the effects of cultivation and transplantation of preimplantation embryos on arterial pressure in individuals developed from these embryos. The analysis of studies performed on the laboratory models (mostly on hypertensive strains of rats) was performed. These data were discussed in the context of application of assisted reproductive technologies in medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amstislavskii, S.Ya., Features of central alpha-adrenergic regulation of blood pressure in rats with inherited stress-induced arterial hypertension, Izv. Akad. Nauk SSSR, Ser. Biol., 1986, vol. 3, no. 18, pp. 118–122.

    Google Scholar 

  • Amstislavskii, S.Ya., Popova, N.K., Tomilova, Yu.E., et al., Effect of the maternal environment on blood pressure and startle reflex in rats with inherited hypertension, Ross. Fiziol. Zh. im. I.M. Sechenova, 1998, vol. 84, pp. 783–789.

    PubMed  Google Scholar 

  • Amstislavskii, S.Ya., Embryotechnological approaches to the conservation of endangered mammalian species, Doctoral (Biol.) Dissertation, Novosibirsk, 2006.

    Google Scholar 

  • Amstislavsky, S., Amstislavskaya, T., Stein, M., et al., Embryo cryobanking for conserving laboratory and wild animal species, Scand. J. Lab. Anim. Sci., 1996, vol. 23, pp. 269–277.

    Google Scholar 

  • Amstislavsky, S., Welker, P., Fruhauf, J.H., et al., Renal and endocrine changes in rats with inherited stress-induced arterial hypertension (ISIAH), Histochem. Cell Biol., 2006, vol. 125, no. 6, pp. 651–659.

    PubMed  CAS  Google Scholar 

  • Antonov, E.V., Moreva, T.A., Cherkasova, O.P., et al., Study of secretory activity of the adrenal cortex in hypertensive rats ISIAH, Byull. SO RAMN, 2010, vol. 30, no. 4, pp. 68–75.

    Google Scholar 

  • Antonov, E.V., Markel’, A.L., and Yakobson, G.S., Aldosterone and stress-dependent hypertension, Byull. Eksp. Biol. Med., 2011, vol. 152, no. 8, pp. 148–151.

    Google Scholar 

  • De Artiñano, A. and Castro, M., Experimental rat models to study the metabolic syndrome, Br. J. Nutr., 2009, vol. 102, no. 9, pp. 1246–1253.

    Google Scholar 

  • Ashton, N., Perinatal development and adult blood pressure, Braz. J. Med. Biol. Res., 2000, vol. 33, no. 7, pp. 731–740.

    PubMed  CAS  Google Scholar 

  • Babatsikou, F. and Zavitsanou, A., Epidemiology of hypertension in the elderly, Heal. Sci. J., 2010, vol. 4, no. 1, pp. 24–30.

    Google Scholar 

  • Bader, M., Rat models of cardiovascular diseases, Rat Genomics. Methods Mol. Biol., 2010, vol. 597, pp. 403–414.

    Google Scholar 

  • Barker, D.J., Fetal origins of coronary heart disease, BMJ, 1995, vol. 311, pp. 171–174.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Barker, D.J., Fetal undernutrition and adult hypertension, in Handbook of Hypertension, McCarty, R., Blizard, D.A., and Chevalier, R.L., Eds., Elsevier Science, 1999, vol. 19, pp. 587–599.

    Google Scholar 

  • Bateson, P., Barker, D., Clutton-Brock, T., Deb, D., et al., Developmental plasticity and human health, Nature, 2004, vol. 430, pp. 419–421.

    PubMed  CAS  Google Scholar 

  • Ben-Ishay, D., Saliternik, R., and Welner, A., Separation of two strains of rats with inherited dissimilar sensitivity to doca-salt hypertension, Experientia, 1972, vol. 28, pp. 1321–1322.

    PubMed  CAS  Google Scholar 

  • Berkovitz, A., Eltes, F., Yaari, S., et al., The morphological normalcy of the sperm nucleus and pregnancy rate of intracytoplasmic injection with morphologically selected sperm, Hum. Reprod., 2005, vol. 20, no. 1, pp. 185–190.

    PubMed  Google Scholar 

  • Bianchi, G. and Ferrari, P., A genetic approach to the pathogenesis of primary hypertension and to its treatment, Clin. Exp. Pharmacol. Physiol., 1995, vol. 22,suppl. 2, pp. S399–S405.

    PubMed  CAS  Google Scholar 

  • Blake, D. and Farquhar, C., Cleavage stage versus blastocyst stage embryo transfer in assisted reproductive technology, Cochrane Database Syst. Rev., 2007, no. 4, pp. 1–61.

    Google Scholar 

  • Bonduelle, M., Wennerholm, U.-B., Loft, A., et al., A multi-centre cohort study of the physical health of 5-year-old children conceived after intracytoplasmic sperm injection, in vitro fertilization and natural conception, Hum. Reprod., 2005, vol. 20, no. 2, pp. 413–419.

    PubMed  CAS  Google Scholar 

  • Braga, V.A. and Burmeister, M.A., Applications of telemetry in small laboratory animals for studying cardiovascular diseases, in Modern Telemetry, Krejcar, O., Ed., InTec, 2011.

    Google Scholar 

  • Brusentsev, E.Yu., Igonina, T.N., and Amstislavskii, S.Ya., Traditional and modern approaches to culture of preimplantation mammalian embryos in vitro, Russ. J. Dev. Biol., 2014, vol. 45, no. 2, pp. 53–65.

    Google Scholar 

  • Bunag, R.D. and Butterfield, J., Tail-cuff blood pressure measurement without external preheating in awake rats, Hypertension, 1982, vol. 4, no. 6, pp. 898–903.

    PubMed  CAS  Google Scholar 

  • Buzueva, I.I., Filyushina, E.E., Shmerling, M.D., et al., Age-related features of the structural organization of the adrenal medulla in hypertensive NISAG rats, Bull. Exp. Biol. Med., 2006, vol. 142, pp. 651–653.

    PubMed  CAS  Google Scholar 

  • Calle, A., Fernandez-Gonzalez, R., Ramos-Ibeas, P., et al., Long-term and transgenerational effects of in vitro culture on mouse embryos, Theriogenology, 2012, vol. 77, no. 4, pp. 785–793.

    PubMed  Google Scholar 

  • Caron, K.M.I., James, L.R., Kim, H.-S., et al., A genetically clamped renin transgene for the induction of hypertension, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, no. 12, pp. 8248–8252.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ceelen, M., van Weissenbruch, M.M., Vermeiden, J.P.W., et al., Cardiometabolic differences in children born after in vitro fertilization: follow-up study, J. Clin. Endocrinol. Metab., 2008, vol. 93, no. 5, pp. 1682–1688.

    PubMed  CAS  Google Scholar 

  • Chrousos, G.P. and Kino, T., Glucocorticoid signaling in the cell: expanding clinical implications to complex human behavioral and somatic disorders, Ann. N.Y. Acad. Sci., 2009, vol. 1179, pp. 153–166.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cierpial, M.A. and McCarty, R., Hypertension in SHR rats: contribution of maternal environment, Am. J. Physiol., 1987, vol. 253, pp. 980–984.

    Google Scholar 

  • Cierpial, M.A., Konarska, M., and McCarty, R., Maternal influences on sympathetic-adrenal medullary system in spontaneously hypertensive rats, Am. J. Physiol., 1990a, vol. 258, pp. 1312–1316.

    Google Scholar 

  • Cierpial, M.A., Murphy, C.A., and McCarty, R., Maternal behaviour of spontaneously hypertensive and Wistar-Kyoto normotensive rats: effects of reciprocal crossfostering of litter, Behav. Neural. Biol., 1990b, vol. 54, pp. 90–96.

    PubMed  CAS  Google Scholar 

  • Collins, S.C., Preimplantation genetic diagnosis: technical advances and expanding applications, Curr. Opin. Obstet. Gynecol., 2013, vol. 25, no. 3, pp. 201–206.

    PubMed  Google Scholar 

  • Cooper, R.S., Wolf-Maier, K., Luke, A., et al., An international comparative study of blood pressure in populations of European vs. African descent, BMC Med., 2005, vol. 3, p. 2.

    PubMed  PubMed Central  Google Scholar 

  • Corvol, P., Persu, A., Gimenez-Roqueplo, A.-P., et al., Seven lessons from two candidate genes in human essential hypertension: angiotensinogen and epithelial sodium channel, Hypertension, 1999, vol. 33, no. 6, pp. 1324–1331.

    PubMed  CAS  Google Scholar 

  • Dahl, L.K., Heine, M., and Tassinari, L., Role of genetic factors in susceptibility to experimental hypertension due to chronic excess salt ingestion, Nature, 1962, vol. 194, pp. 480–482.

    PubMed  CAS  Google Scholar 

  • Davies, M.J., Moore, V.M., Willson, K.J., et al., Reproductive technologies and the risk of birth defects, N. Engl. J. Med., 2012, vol. 366, no. 19, pp. 1803–1813.

    PubMed  CAS  Google Scholar 

  • Dene, H. and Rapp, J.P., Maternal effects on blood pressure and survivability in inbred Dahl salt-sensitive rats, Hypertension, 1985, vol. 7, no. 5, pp. 767–774.

    PubMed  CAS  Google Scholar 

  • Devroey, P., Staessen, C., Camus, M., et al., Zygote intrafallopian transfer as a successful treatment for unexplained infertility, Fertil. Steril., 1989, vol. 52, p. 246.

    PubMed  CAS  Google Scholar 

  • Ecker, D.J., Stein, P., Xu, Z., et al., Long-term effects of culture of preimplantation mouse embryos on behavior, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, no. 6, pp. 1595–1600.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fernandez-Gonzalez, R., Moreira, P., Bilbao, A., et al., Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 16, pp. 5880–5885.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fowden, A.L., Giussani, D.A., and Forhead, A.J., Intrauterine programming of physiological systems: causes and consequences, Physiology (Bethesda), 2006, vol. 21, pp. 29–37.

    PubMed  CAS  Google Scholar 

  • Gerris, J., Single-embryo transfer versus multiple-embryo transfer, Reprod. Biomed. Online, 2009, vol. 18, pp. 63–70.

    PubMed  Google Scholar 

  • Gilbert, J. and Nijland, M., Sex differences in the developmental origins of hypertension and cardiorenal disease, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2008, vol. 295, pp. 1941–1952.

    Google Scholar 

  • Gouldsborough, I., Black, V., Johnston, I.T., et al., Maternal nursing behaviour and the delivery of milk to the neonatal spontaneously hypertensive rats, Acta Physiol. Scand., 1998, vol. 1, pp. 107–114.

    Google Scholar 

  • Gray, S.D., Reciprocal embryo transfer between SHR and WKY. II. Effect on cardiovascular development, Clin. Exp. Hypertens. Part A Theory Pract., 1991, vol. 13, pp. 963–969.

    CAS  Google Scholar 

  • Handyside, A.H., Kontogianni, E.H., Hardy, K., et al., Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification, Nature, 1990, vol. 344, pp. 768–770.

    PubMed  CAS  Google Scholar 

  • Hardy, K., Wright, C., Rice, S., et al., Future developments in assisted reproduction in humans, Reproduction, 2002, vol. 123, pp. 171–183.

    PubMed  CAS  Google Scholar 

  • Harrison, M. and Langley-Evans, S.C., Intergenerational programming of impaired nephrogenesis and hypertension in rats following maternal protein restriction during pregnancy, Br. J. Nutr., 2009, vol. 101, no. 7, pp. 1020–1030.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hayashi, M., Nakai, A., Satoh, S., et al., Adverse obstetric and perinatal outcomes of singleton pregnancies may be related to maternal factors associated with infertility rather than the type of assisted reproductive technology procedure used, Fertil. Steril., 2012, vol. 98, no. 4, pp. 922–928.

    PubMed  Google Scholar 

  • Julien, C., Bertolino, S., Medeiros, I.A., et al., Renin secretion in Lyon hypertensive rats, Clin. Exp. Hypertens., 1997, vol. 19, pp. 699–711.

    PubMed  CAS  Google Scholar 

  • Khosla, S., Dean, W., Reik, W., and Feil, R., Culture of preimplantation embryos and its long-term effects on gene expression and phenotype, Hum. Reprod. Update, 2001, vol. 7, no. 4, pp. 419–427.

    PubMed  CAS  Google Scholar 

  • Klimov, L.O., Fedoseeva, L.A., Ryazanova, M.A., et al., Expression of rennin-angiotensin system genes in brain structures of ISIAH rats with stress-induced arterial hypertension, Bull. Exp. Biol. Med., 2013, vol. 154, no. 3, pp. 357–360.

    PubMed  CAS  Google Scholar 

  • Kondratenko, E.I. and Lomteva, N.A., Orienting behavior of female white rats in estrus cycle and its dependence on handling, Zh. Vyssh. Nerv. Deyat. im I.P. Pavlova, 2003, vol. 53, no. 3, pp. 376–378.

    CAS  Google Scholar 

  • Kubisch, H.M., Mathialagan, S., and Gomez-Sanchez, E.P., Modulation of blood pressure in the Dahl SS/Jr rat by embryo transfer, Hypertension, 1998, vol. 31, no. 1, pp. 540–545.

    PubMed  CAS  Google Scholar 

  • Kubisch, H.M. and Gómez-Sánchez, E.P., Embryo transfer in the rat as a tool to determine genetic components of the gestational environment, Lab. Anim. Sci., 1999, vol. 49, no. 1, pp. 90–94.

    PubMed  CAS  Google Scholar 

  • Kudryashova, D.R., Markel, A.L., Sharova, T.V., et al., Effect of neonatal handling in rats with hereditary stress-induced arterial hypertension (NISAG rats), Bull. Exp. Biol. Med., 2004, vol. 137, no. 4, pp. 345–347.

    PubMed  CAS  Google Scholar 

  • Kwong, W.Y., Wild, A.E., Roberts, P., et al., Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension, Development, 2000, vol. 127, no. 19, pp. 4195–4202.

    PubMed  CAS  Google Scholar 

  • Ledingham, J.M. and Ashton, N., Remodelling of mesenteric arteries in genetically hypertensive rats cross-fostered from birth to normotensive Wistar rats, Clin. Exp. Pharmacol. Physiol., 2005, vol. 32, no. 10, pp. 859–864.

    PubMed  CAS  Google Scholar 

  • Lee, J.Y. and Azar, S.H., Wistar-Kyoto and spontaneously hypertensive rat blood pressure after embryo transfer into different wombs and cross-suckling, Exp. Biol. Med. (Maywood), 2010, vol. 235, no. 11, pp. 1375–1384.

    CAS  Google Scholar 

  • Lee, M.A., Bohm, M., Paul, M., et al., Physiological characterization transgenic of the hypertensive transgenic rat TGR(mREN2)27, Am. Physiol. Soc., 1996, vol. 270, no. 42, pp. 919–929.

    Google Scholar 

  • Lee, S.K., Sirajudeen, K.N.S., Sundaram, A., et al., Effect of cross-fostering on renal anti-oxidant/oxidant status and development of hypertension in spontaneously hypertensive rats, Clin. Exp. Pharmacol. Physiol., 2011, vol. 38, no. 12, pp. 854–859.

    PubMed  CAS  Google Scholar 

  • Leese, H.J., Quiet please, do not disturb: a hypothesis of embryo metabolism and viability, BioEssays, 2002, vol. 24, pp. 845–849.

    PubMed  Google Scholar 

  • Leese, H.J., Metabolism of the preimplantation embryo: 40 years on, Reproduction, 2012, vol. 143, no. 4, pp. 417–427.

    PubMed  CAS  Google Scholar 

  • Lindsay, R.S., Lindsay, R.M., Edwards, C.R.W., et al., Inhibition of 11β-hydroxysteroid dehydrogenase in pregnant rats and the programming of blood pressure in the offspring, Hypertension, 1996, vol. 27, pp. 1200–1204.

    PubMed  CAS  Google Scholar 

  • Loi, M., Del Savio, L., and Stupka, E., Social epigenetics and equality of opportunity, Public Health Ethics, 2013, vol. 6, no. 2, pp. 142–153.

    PubMed  PubMed Central  Google Scholar 

  • Lu, Y., Wang, N., and Jin, F., Long-term follow-up of children conceived through assisted reproductive technology, J. Zhejiang Univ. Sci. B, 2013, vol. 14, no. 5, pp. 359–371.

    PubMed  PubMed Central  Google Scholar 

  • Ludwig, M., Katalinic, A., Gro, S., et al., Increased prevalence of imprinting defects in patients with Angelman syndrome born to subfertile couples, J. Med. Genet., 2005, vol. 42, no. 4, pp. 289–291.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mann, M.R.W., Lee, S.S., Doherty, A.S., et al., Selective loss of imprinting in the placenta following preimplantation development in culture, Development, 2004, vol. 131, no. 15, pp. 3727–3735.

    PubMed  CAS  Google Scholar 

  • Markel’, A.L., Genetic model of inherited stress-induced arterial hypertension, Izv. AN SSSR, Ser. Biol., 1985, vol. 3, pp. 466–469.

    Google Scholar 

  • Markel, A.L., Development of a new strain of rats with inherited stress-induced arterial hypertension, in Genetic Hypertension, Sassard, J., Ed., London: Colloque INSERM, 1992, pp. 405–407.

    Google Scholar 

  • Markel, A.L., Maslova, L.N., Shishkina, G.T., et al., Developmental influences on blood pressure regulation in ISIAH rats, in Handbook of Hypertension, McCarty, R., Blizard, D.A., and Chevalier, R.L., Eds., Elsevier Science, 1999, vol. 19, pp. 493–526.

    CAS  Google Scholar 

  • Markel, A.L., Redina, O.E., Gilinsky, M., et al., Neuroendocrine profiling in inherited stress-induced arterial hypertension rat strain with stress-sensitive arterial hypertension, J. Endocrinol., 2007, vol. 195, pp. 439–450.

    PubMed  CAS  Google Scholar 

  • Market-Velker, B.A., Fernandes, A.D., and Mann, M.R.W., Side-by-side comparison of five commercial media systems in a mouse model: suboptimal in vitro culture interferes with imprint maintenance, Biol. Reprod., 2010, vol. 83, no. 6, pp. 938–950.

    PubMed  CAS  Google Scholar 

  • Mason, B.A., Simple techniques past and present as an alternative to in-vitro fertilization and GIFT, British Med. Bull., 1990, vol. 46, no. 3, pp. 783–795.

    CAS  Google Scholar 

  • McCarty, R., Development of the hypertensive phenotype. basic and clinical studies, in Handbook of Hypertension, McCarty, R., Blizard, D.A., and Chevalier, R.L., Eds., Elsevier Science, 1999, vol. 19, pp. 413–429.

    Google Scholar 

  • McCarty, R. and Lee, J.H., Maternal influences on adult blood pressure of SHRs: a single pup cross-fostering study, Physiol. Behav., 1996, vol. 1, pp. 71–75.

    Google Scholar 

  • McCarty, R. and Tong, H., Development of hypertension in spontaneously hypertensive rats: role of milk electrolytes, Clin. Exp. Pharmacol. Physiol. Suppl., 1995, vol. 22, pp. 215–217.

    Google Scholar 

  • McLaren, A. and Biggers, J.D., Successful development and birth of mice cultivated in vitro as early as early embryos, Nature, 1958, vol. 182, no. 4639, pp. 877–878.

    PubMed  CAS  Google Scholar 

  • Miles, H.L., Hofman, P.L., Peek, J., et al., In vitro fertilization improves childhood growth and metabolism, J. Clin. Endocrinol. Metab., 2007, vol. 92, no. 9, pp. 3441–3445.

    PubMed  CAS  Google Scholar 

  • Mizuno, A., Hoshi, M., Hirabayashi, M., et al., Development of hypertension in spontaneously hypertensive rats from cryopreserved embryos transferred to normotensive Wistar rats, J. Hypertens., 1986, vol. 4, pp. 373–374.

    Google Scholar 

  • Mohr, L.R. and Trounson, A.O., Cryopreservation of human embryos, Ann. N.Y. Acad. Sci., 1985, vol. 442, pp. 536–543.

    PubMed  CAS  Google Scholar 

  • Molčan, Ľ., Veselá, A., and Zeman, M., Radiotelemetry measurement of heart rate, blood pressure and locomotory activity of rats in physiological experiment, Slovak J. Anim. Sci., 2009, vol. 42, pp. 63–66.

    Google Scholar 

  • Myers, M.M., Brunelli, S.A., Squire, J.M., et al., Maternal behavior of SHR rats and its relationship to offspring blood pressures, Dev. Psychobiol., 1989a, vol. 22, pp. 29–53.

    PubMed  CAS  Google Scholar 

  • Myers, M.M., Brunelli, S.A., Shair, H.N., et al., Relationships between maternal behavior of SHR and WKY dams and adult blood pressures of cross-fostered F1 pups, Dev. Psychobiol., 1989b, vol. 22, pp. 55–67.

    PubMed  CAS  Google Scholar 

  • Di Nicolantonio, R., Koutsis, K., Westcott, K.T., et al., Relative contribution of the prenatal versus postnatal period on development of hypertension and growth rate of the spontaneously hypertensive rat, Clin. Exp. Pharmacol. Physiol., 2006, vol. 33, nos. 1–2, pp. 9–16.

    PubMed  Google Scholar 

  • Norwitz, E.R., Edusa, V., and Park, J.S., Maternal physiology and complications of multiple pregnancy, Semin. Perinatol., 2005, vol. 29, no. 5, pp. 338–348.

    PubMed  Google Scholar 

  • Okamoto, K. and Aoki, K., Development of a strain of spontaneously hypertensive rats, Jap. Circ. J., 1963, vol. 27, pp. 282–293.

    PubMed  CAS  Google Scholar 

  • Okamoto, K., Yamori, Y., Nosaka, S., et al., Studies on hypertension in spontaneously hypertensive rats, Clin. Sci. Mol. Med., 1973, vol. 45, pp. 11–14.

    Google Scholar 

  • Palermo, G., Joris, H., Devroey, P., et al., Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte, Lancet, 1992, vol. 340, pp. 17–18.

    PubMed  CAS  Google Scholar 

  • Paneth, N. and Susser, M., Early origin of coronary heart disease (the “barker hypothesis”), BMJ, 1995, vol. 310, pp. 411–412.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pinto, Y.M., Paul, M., and Ganten, D., Lessons from rat models of hypertension: from Goldblatt to genetic engineering, Cardiovasc. Res., 1998, vol. 39, no. 1, pp. 77–88.

    PubMed  CAS  Google Scholar 

  • Pravenec, M. and Kurtz, T.W., Recent advances in genetics of the spontaneously hypertensive rat, Curr. Hypertens. Rep., 2010, vol. 12, no. 1, pp. 5–9.

    PubMed  PubMed Central  Google Scholar 

  • Pyl’nik, T.O., Redina, O.E., Smolenskaya, S.E., et al., Characteristics of expression of Egf and Egfr genes in kidney tissue of hypertensive NISAG (ISIAH) rats, Ross. Fiziol. Zh. im. I.M. Sechenova, 2012, vol. 98, pp. 69–76.

    Google Scholar 

  • Ragaeva, D.S., Brusentsev, E.Yu., Rozhkova, I.N., et al., Cryopreservation of embryos and hypertensive NISAG rats: physiological and behavioral effects, in III ezhegodnaya konferentsiya spetsialistov po rabote s laboratornymi zhivotnymi (III Annual Conference of Experts on the Use of Laboratory Animals), Novosibirsk, 2013.

    Google Scholar 

  • Rapp, J.P., Genetic analysis of inherited hypertension in the rat, Physiol. Rev., 2000, vol. 80, no. 1, pp. 135–172.

    PubMed  CAS  Google Scholar 

  • O’Regan, D., Kenyon, C.J., Seckl, J.R., et al., Prenatal dexamethasone “programmes” hypotension, but stressinduced hypertension in adult offspring, J. Endocrinol., 2008, vol. 196, no. 2, pp. 343–352.

    Google Scholar 

  • Rivera, R.M., Stein, P., Weaver, J.R., et al., Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development, Hum. Mol. Genet., 2008, vol. 17, no. 1, pp. 1–14.

    PubMed  CAS  Google Scholar 

  • Rivera, R.M. and Ross, J.W., Epigenetics in fertilization and preimplantation embryo development, Prog. Biophys. Mol. Biol., 2013, vol. 113, no. 3, pp. 423–432.

    PubMed  Google Scholar 

  • Romundstad, L.B., Romundstad, P.R., Sunde, A., et al., Effects of technology or maternal factors on perinatal outcome after assisted fertilisation: a population-based cohort study, Lancet, 2008, vol. 372, no. 9640, pp. 737–743.

    PubMed  Google Scholar 

  • Sazonova, A., Källen, K., Thurin-Kjellberg, A., et al., Obstetric outcome after in vitro fertilization with single or double embryo transfer, Hum. Reprod., 2011, vol. 26, no. 2, pp. 442–450.

    PubMed  Google Scholar 

  • Scherrer, U., Rimold, S.F., Rexhaj, E., et al., Systemic and pulmonary vascular dysfunction in children conceived by assisted reproductive technologies, Circulation, 2012, vol. 125, pp. 1890–1896.

    PubMed  Google Scholar 

  • Selye, H., Syndrome produced by diverse nocuous agents, Nature, 1936, vol. 138, p. 32.

    Google Scholar 

  • Simpson, F.O., Ledingham, J.M., Paulin, J.M., et al., Body sodium in rats: response to DOCA, adrenalectomy, changes in salt intake, and a salt load, Am. J. Physiol., 1986, vol. 250, no. 3, pp. F551–F558.

    PubMed  CAS  Google Scholar 

  • Sjöblom, C., Roberts, C.T., Wikland, M., and Robertson, S.A., Granulocyte-macrophage colony-stimulating factor alleviates adverse consequences of embryo culture on fetal growth trajectory and placental morphogenesis, Endocrinology, 2005, vol. 146, no. 5, pp. 2142–2153.

    PubMed  Google Scholar 

  • Smirk, F.H. and Hall, W.H., Inherited hypertension in rats, Nature, 1958, vol. 182, no. 4637, pp. 727–728.

    PubMed  CAS  Google Scholar 

  • Stewart, T., Jung, F.F., Manning, J., et al., Kidney immune cell infiltration and oxidative stress contribute to prenatally programmed hypertension, Kidney Int., 2005, vol. 68, no. 5, pp. 2180–2188.

    PubMed  CAS  Google Scholar 

  • Tang, M., Gandelman, R., and Falk, J.L., Amelioration of genetic (SHR) hypertension: a consequence of early handling, Physiol. Behav., 1982, vol. 28, no. 6, pp. 1089–1091.

    PubMed  CAS  Google Scholar 

  • Trippodo, N.C. and Frohlich, E.D., Similarities of genetic (spontaneous) hypertension. man and rat, Circ. Res., 1981, vol. 48, no. 3, pp. 309–319.

    PubMed  CAS  Google Scholar 

  • Wadhwa, P.D., Sandman, C.A., Porto, M., et al., The association between prenatal stress and infant birth weight and gestational age at birth: a prospective investigation, Am. J. Obstet. Gynecol., 1993, vol. 169, no. 4, pp. 858–865.

    PubMed  CAS  Google Scholar 

  • Waterland, R.A. and Michels, K.B., Epigenetic epidemiology of the developmental origins hypothesis, Annu. Rev. Nutr., 2007, vol. 27, pp. 363–388.

    PubMed  CAS  Google Scholar 

  • Watkins, A. and Platt, D., Mouse embryo culture induces changes in postnatal phenotype including raised systolic blood pressure, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 13, pp. 5449–5454.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wen, S.F., Tremblay, J.M., Qu, M.H., et al., An impedance method for blood pressure measurement in awake rats without preheating, Hypertension, 1988, vol. 11, no. 4, pp. 371–375.

    PubMed  CAS  Google Scholar 

  • Xie, Y., Awonuga, A.O., Zhou, S., et al., Interpreting the stress response of early mammalian embryos and their stem cells, Internat. Rev. Cell Mol. Biol., 2011, vol. 287, pp. 43–95.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ya. Amstislavsky.

Additional information

Original Russian Text © D.S. Ragaeva, E.Yu. Brusentsev, S.Ya. Amstislavsky, 2014, published in Ontogenez, 2014, Vol. 45, No. 5, pp. 299–313.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ragaeva, D.S., Brusentsev, E.Y. & Amstislavsky, S.Y. Assisted reproductive technologies and arterial hypertension. Russ J Dev Biol 45, 243–256 (2014). https://doi.org/10.1134/S1062360414050087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360414050087

Keywords

Navigation