Skip to main content
Log in

Morphological diversity in the postnatal skull development in representatives of two families of rodents (Spalacidae, Castoridae, Rodentia)

  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

This is the first study to describe the results of measurement of three information parameters of morphological diversity (entropy, the measure of organization, and the Kullback-Leibler divergence) in the course of postnatal development of the skull in the populations of two rodent species (greater mole rat (Spalax microphthalmus Guld.) and Eurasian beaver (Castor fiber (L.)). The terms “morphosystem” and “morphological space” and its structure are introduced. Within the framework of the developed approach, “morphological diversity” is considered as a variable associated with the morphological space structure. Testing the hypothesis of the dominance of self-organization processes and an increase in the organization of the morphological diversity of the skull in the course of ontogeny showed its inconsistency. The morphosystem of the skull of the studied species undergoes transitions between more organized and less organized states, periodically approaching and departing from the “steady state.” Such dynamics characterizes the morphosystem of the skull as a dynamic and nonlinear system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramov, A.V., Puzachenko, A.Yu., and Wiig, Ø., Cranial variation in the European badger Meles meles (Carnivora, Mustelidae) in Scandinavia, Zool. J. Linnean Soc., 2009, vol. 157, pp. 433–450.

    Article  Google Scholar 

  • Atchley, W.R. and Newman, S., A quantitative-genetics perspective on mammalian development, Am. Nat., 1989, vol. 134, no. 3, pp. 486–512.

    Article  Google Scholar 

  • Bir, S., Kibernetika i upravlenie proizvodstvom (Cybernetics and Control of Production), Moscow: Fizmatgiz, 1963.

    Google Scholar 

  • Clarke, G.M., The genetic basis of developmental stability. V. Inter- and intra-individual character variation, Heredity, 1998, vol. 80, pp. 562–567.

    Article  Google Scholar 

  • Debat, V., Alibert, P., David, P., et al., Independence between developmental stability and canalization in the skull of the house mouse, Proc. R. Soc. Lond. Ser. B, 2000, vol. 267, pp. 423–430.

    Article  CAS  Google Scholar 

  • Davison, M., Mnogomernoe shkalirovanie: Metody naglyadnogo predstavleniya dannykh (Multidimensional Scaling: Methods of Data Visualization), Moscow: Finansy i statistika, 1988.

    Google Scholar 

  • Dempster, A.P., Laird, N.M., and Rubin, D.B., Maximum likelihood from incomplete data via the EM algorithm, J. Royal Stat. Soc. Ser. B, 1977, vol. 39, no. 1, pp. 1–38.

    Google Scholar 

  • Von Foerster, H., On self-organizing systems and their environments, in The Interdisciplinary Symposium on Self-Organizing Systems, May 5, 1959, Chicago, Illinois, in Self-Organizing Systems, Yovits, M.C. and Cameron, S., Eds., London: Pergamon Press, 1960, pp. 31–50.

    Google Scholar 

  • Gilbert, S.F., Mechanisms for the environmental regulation of gene expression: ecological aspects of animal development, J. Biosci., 2005, vol. 30, pp. 65–74.

    Article  CAS  PubMed  Google Scholar 

  • Gol’din, P.E., Growth, proportions and variation of the skull of harbour porpoises (Phocoena phocoena) from the Sea of Azov, J. Mar. Biol. Assoc. U.K., 2007, vol. 87, pp. 271–292.

    Article  Google Scholar 

  • Herring, S.W., Masticatory muscles and he skull: a comparative perspective, Arch. Oral Biol., 2007, vol. 52, no. 4, pp. 296–299.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kendall, M.G., Rank Correlation Methods, London: Charles Griffin and Co., Ltd., 1975.

    Google Scholar 

  • Klevezal’, G.A., Registriruyushchie struktury mlekopitayushchikh v zoologicheskikh issledovaniyakh (Recording Structures of Mammals in Zoological Research), Moscow: Nauka, 1988.

    Google Scholar 

  • Klingenberg, C.P. and Nijhout, H.F., Competition among growing organs and developmental control of morphological asymmetry, Proc. R. Soc. Lond. B, 1998, vol. 265, pp. 1135–1139.

    Article  Google Scholar 

  • Klingenberg, C.P., Morphological integration and developmental modularity, Ann. Rev. Ecol. Evol. Syst., 2008, vol. 39, pp. 115–132.

    Article  Google Scholar 

  • Klingenberg, C.P., Cranial integration and modularity: insights into evolution and development from morphometric data, Hystrix, 2013, vol. 24, no. 1, pp. 43–58.

    Google Scholar 

  • Korablev, H.P. and Korablev, P.H., Patterns of morphological variability of reintroduced populations: a case study of two subspecies of beaver Castor fiber orientoeuropaeus and Castor fiber belorussicus (Castoridae, Rodentia), Zh. Obshch. Biol., 2012, vol. 73, no. 3, pp. 210–224.

    CAS  PubMed  Google Scholar 

  • Kramarenko, S.S., Method of using entropy and information analysis for quantitative traits, Izv. Samar. Nauch. Tsentra RAN, 2005, vol. 7, no. 1, pp. 242–247.

    Google Scholar 

  • Kullback, S. and Leibler, R.A., On information and sufficiency, Ann. Math. Statist., 1951, vol. 22, pp. 79–86.

    Article  Google Scholar 

  • Kupriyanova, I.F., Puzachenko, A.Yu., and Agadzhanyan, A.K., Temporal and spatial components of skull variability of the common shrew, Sorex araneus (Insectivora), Zool. Zh., 2003, vol. 82, no. 7, pp. 839–851.

    Google Scholar 

  • Lebedeva, N.V. and Krivolutskii, D.A., Biological diversity and its assessment methods, in Sokhranenie bioraznoobraziya (Biodiversity Conservation), Moscow: Izd. Nauch. Ucheb.-Metod. Tsentra, 2002, pp. 13–142.

    Google Scholar 

  • Marroig, G.A. and Cheverud, J.M., Comparison of phenotypic variation and covariation patterns and the role of phylogeny, ecology, and ontogeny during cranial evolution of new world monkeys, Evolution, 2001, vol. 55, no. 12, pp. 2576–2600.

    Article  CAS  PubMed  Google Scholar 

  • Mikhalevich, O.A., System of correlation of craniological features of the common vole, in 5 S”ezd Vseros. teriol. o-va AN SSSR, Moskva, 29 yanvarya–2 fevralya, 1990 (5th All-Russia Congr. Teriol. Obshch. USSR Academy of Sciences, Moscow, January 29–February 2, 1990), Moscow, 1990, vol. 1, pp. 201–202.

    Google Scholar 

  • Moore, W.J., Muscular function and skull growth in the laboratory rat (Rattus norvegicus), J. Zool., 1967, vol. 152, no. 3, pp. 287–296.

    Article  Google Scholar 

  • Nelder, J. and Wedderburn, R., Generalized linear models, J. Royal Stat. Soc. Ser. A (General), 1972, vol. 135, no. 3, pp. 370–384.

    Article  Google Scholar 

  • Nicolis, J., Dinamika ierarkhicheskikh sistem: Evolyutsionnoe predstavlenie (Dynamics of Hierarchical Systems: the Evolutionary View), New York: Wiley, 1987.

    Google Scholar 

  • Pavlinov, I.Ya., Morphological Disparity: an Attempt to Widen and to Formalize the Concept/Research in Biodiversity—Models and Applications, Pavlinov, I.Ya., Ed., Rijeka, Croatia: Intech—Open Access Publ., 2011, pp. 341–364.

  • Puzachenko, A.Yu., Determination of age of the common mole rat Spalax microphtalmus (Rodentia, Spalacidae), Zool. Zh., 1991, vol. 70, no. 12, pp. 113–124.

    Google Scholar 

  • Puzachenko, Yu.G., General methodological problems of information, in Ekoinformatika: teoriya, praktika, metody i sistemy (Ecoinformatics: Theory, Practice, Methods and Systems), St. Petersburg: Gidrometeoizdat, 1992, pp. 7–78.

    Google Scholar 

  • Puzachenko, Yu.G. and Puzachenko, A.Yu., Semantic aspects of biodiversity, Zh. Obshch. Biol., 1996, vol. 57, no. 1, pp. 5–43.

    Google Scholar 

  • Puzachenko, A.Yu., Application of multidimensional scaling in structure analysis, in Sistematika i filogeniya gryzunov i zaitseobraznykh. Sbornik statei (Systematics and Phylogeny of Rodents and Lagomorphs), Moscow, 2000, pp. 137–140.

    Google Scholar 

  • Puzachenko, A.Yu., Intrapopulation variability of the skull of the common mole rat Spalax microphthalmus (Spalacidae, Rodentia). 1. Method of data analysis and age-unrelated variability of males, Zool. Zh., 2001a, vol. 80, no. 3, pp. 1–15.

    Google Scholar 

  • Puzachenko, A.Yu., Intrapopulation variability of the skull of the common mole rat Spalax microphthalmus (Spalacidae, Rodentia). 2. Variability of females, sexual dimorphism and age variability, Zool. Zh., 2001b, vol. 80, no. 4, pp. 466–476.

    Google Scholar 

  • Puzachenko, A.Yu., Skull variability in the mole rats of the genus Nannospalax (Spalaciadae, Rodentia), Zool. Zh., 2006, vol. 85, no. 2, pp. 235–253.

    Google Scholar 

  • Puzachenko, A.Yu. and Zagrebel’nyi, S.V., Skull variability in foxes Alopex lagopus L. (Carnivora, Canidae) of Eurasia, Zool. Zh., 2008, vol. 87, no. 9, pp. 1106–1123.

    Google Scholar 

  • Puzachenko, A.Yu., Information variables of morphometric diversity of mammals, in Teriofauna Rossii i sopredel’nykh territorii. Mezhdunarodnoe soveshchanie (IX S”ezd Teriologicheskogo obshchestva pri RAN) (Theriofauna of Russia and Adjacent Countries: International Meeting (IX Congress of Theriological Society of RAS)), Moscow: Tovar. Nauch. Izd. KMK, 2011, p. 384.

    Google Scholar 

  • Puzachenko, A.Yu., Invariants and dynamics of morphological diversity (a case study of mammalian skull), Extended Abstract of Doctoral (Biol.) Dissertation, Moscow: IPEE RAN, 2013.

    Google Scholar 

  • Riska, B., Atchley, W.R., and Rutledge, J.J., A genetic analysis of targeted growth in mice, Genetics, 1984, vol. 107, pp. 79–101.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Romer, A. and Parson, T., The Vertebrate Body, Philadelphia: Saunders, 1986.

    Google Scholar 

  • Roseman, Ch.C., Willmore, K.E., Rogers, J., et al., Genetic and environmental contributions to variation in baboon cranial morphology, Am. J. Phys. Anthropol., 2010, vol. 143, pp. 1–12.

    Article  PubMed Central  PubMed  Google Scholar 

  • Safonov, V.G., Morphological features and structure of beaver populations, Byul. MOIP. Otd. Biol., 1966, no. 4, pp. 5–19.

    Google Scholar 

  • Searle, S.R., Casella, G., and McCulloch, C.E., Variance Components, New York: Wiley, 1992.

    Book  Google Scholar 

  • Shannon, C.E., A mathematical theory of communication, Bell Syst. Techn. J., 1948, vol. 27, pp. 623–656.

    Article  Google Scholar 

  • Singh, N., Harvati, K., Hublin, J.-J., et al., Morphological evolution through integration: a quantitative study of cranial integration in homo, pan, gorilla and pongo, J. Hum. Evol., 2012, vol. 62, pp. 155–164.

    Article  PubMed  Google Scholar 

  • Sokal, R.R. and Rohlf, F.J., Biometry, New York: Freeman, 1981.

    Google Scholar 

  • Tanner, J.M., Regulation of growth in size in mammals, Nature, 1963, pp. 845–850.

    Google Scholar 

  • Trainor, P.A., Melton, K.R., and Manzanares, M., Origins and plasticity of neural crest cells and their roles in jaw and craniofacial evolution, Int. J. Dev. Biol., 2003, vol. 47, pp. 541–553.

    PubMed  Google Scholar 

  • Waddington, C.H., Canalization of development and the inheritance of acquired characters, Nature, 1942, pp. 563–565.

    Google Scholar 

  • Willmore, K.E., Young, N.M., and Richtsmeier, J.T., Phenotypic variability: its components, measurement and underlying developmental processes, Evol. Biol., 2007, vol. 34, pp. 99–120.

    Article  Google Scholar 

  • Young, R.L. and Badyaev, A.V., Evolutionary persistence of phenotypic integration: influence of developmental and functional relationships on complex on trait evolution, Evolution, 2006, vol. 60, no. 6, pp. 1291–1299.

    Article  PubMed  Google Scholar 

  • Zakharov, V.M., Demin, D.V., Baranov, A.S., et al., Developmental stability and population dynamics of shrews Sorex in central Siberia, in Developmental Homeostasis in Natural Populations of Mammals: Phenetic Approach, Zakharov, V.M. and Yablokov, A.V., Eds., Acta Theriol., 1997, Suppl. 4, pp. 41–48.

    Google Scholar 

  • Zakharov, V.M., Population phenogenetics: analysis of developmental stability in natural populations, Acta Zool. Fenn., 1992, vol. 191, pp. 7–30.

    Google Scholar 

  • Zeiditch, M.L. and Carmichael, A.C., Growth and intensity of integration through postnatal growth in the skull of Sigmodon fulviventer, J. Mammal., 1989, vol. 70, no. 3, pp. 477–484.

    Article  Google Scholar 

  • Zelditch, M.L., Lundrigan, B.L., and Garland, T., Jr., Developmental regulation of skull morphology. I. Ontogenetic dynamics of variance, Evol. Dev., 2004, vol. 6, no. 3, pp. 194–206.

    Article  PubMed  Google Scholar 

  • Zelditch, M.L., Mezey, J., Sheets, H.D., et al., Developmental regulation of skull morphology. II. Ontogenetic dynamics of covariance, Evol. Dev., 2006, vol. 8, no. 1, pp. 46–60.

    Article  PubMed  Google Scholar 

  • Zelditch, M.L. and Wood, A.R., Modularity of the rodent mandible: integrating bones, muscles, and teeth, Evol. Develop., 2008, vol. 10, no. 6, pp. 756–768.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Puzachenko.

Additional information

Original Russian Text © A.Yu. Puzachenko, N.P. Korablev, 2014, published in Ontogenez, 2014, Vol. 45, No. 3, pp. 187–200.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puzachenko, A.Y., Korablev, N.P. Morphological diversity in the postnatal skull development in representatives of two families of rodents (Spalacidae, Castoridae, Rodentia). Russ J Dev Biol 45, 149–162 (2014). https://doi.org/10.1134/S1062360414030047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360414030047

Keywords

Navigation