Skip to main content
Log in

Evaluation of Interactions of Triterpenes in M. charantia with Proteins Involved in Vascularization in In Silico

  • GENETICS
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Angiogenesis is an important process that plays an active role in tumorigenesis. VEGFRs, a member of the tyrosine kinase receptor family involved in this process, is known as the receptor for VEGF ligands in tumor cells. c-Src is an adapter protein located downstream of VEGFRs and plays a role in angiogenic signaling. SPARC protein has recently been shown to play a role in metastasis in various types of cancer. In this study, inhibition of angiogenesis via extracellular matrix and VEGF/VEGFRs is aimed. Momordica charantia; is a valuable plant used quite often in traditional medicine. Triterpenes from various regions of plant appear to be promising in in vitro cancer-related studies. In our study; literature was searched to identify possible triterpenes in this plant; triterpenes in fruit and seed were selected. The 2D and 3D structure files of these triterpenes were obtained from PubChem. The structure files of the ligands were prepared with various programs and converted to the appropriate file format. X-ray diffraction structures of proteins were obtained from RCSB PDB. These structure files were made suitable for molecular docking studies. Docking and scoring were performed with the Vina program to select the appropriate poses. According to the in silico analysis; It has been found that various triterpenes that can be obtained from M. charantia plant may inhibit VEGFRs, SPARC, and c-Src proteins. These results show that these triterpenes are promising in terms of new natural therapeutic routes and drug candidates for aggressive cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Abhinand, C.S., Raju, R., Soumya, S.J., Arya, P.S., and Sudhakaran, P.R., VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis, J. Cell Commun. Signal., 2016, vol. 10, pp. 347–354. https://doi.org/10.1007/s12079-016-0352-8

    Article  PubMed  PubMed Central  Google Scholar 

  2. Adams, R.H. and Alitalo, K., Molecular regulation of angiogenesis and lymphangiogenesis, Nat. Rev. Mol. Cell Biol., 2007, vol. 8, pp. 464–478. https://doi.org/10.1038/nrm2183

    Article  CAS  PubMed  Google Scholar 

  3. Akihisa, T., Tokuda, H., Ichiishi, E., Mukainaka, T., Toriumi, M., Ukiya, M., et al., Anti-tumor promoting effects of multiflorane-type triterpenoids and cytotoxic activity of karounidiol against human cancer cell lines, Cancer Lett., 2001, vol. 173, pp. 9–14. https://doi.org/10.1016/s0304-3835(01)00689-9

    Article  CAS  PubMed  Google Scholar 

  4. Bernaldez, M.J.A., Billones, J.B., and Magpantay, A., In silico analysis of binding interactions between GSK983 and human DHODH through docking and molecular dynamics, AIP Conf. Proc., 2018, vol. 2045, p. 020073. https://doi.org/10.1063/1.5080886

    Article  CAS  Google Scholar 

  5. Blaskovich, M.A., Sun, J., Cantor, A., Turkson, J., Jove, R., and Sebti, S.M., Discovery of JSI-124 (cucurbitacin I), a selective Janus kinase/signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice, Cancer Res., 2003, vol. 63, pp. 1270–1279.

    CAS  PubMed  Google Scholar 

  6. Bortolotti, M., Mercatelli, D., and Polito, L., Momordica charantia, a nutraceutical approach for inflammatory related diseases, Front. Pharmacol., 2019, vol. 10. https://doi.org/10.3389/fphar.2019.00486

  7. Bradshaw, A.D. and Sage, E.H., SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury, J. Clin. Invest., 2001, vol. 107, pp. 1049–1054. https://doi.org/10.1172%2FJCI12939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brozzo, M.S., Bjelić, S., Kisko, K., Schleier, T., Leppänen, V.-M., Alitalo, K., et al., Thermodynamic and structural description of allosterically regulated VEGFR-2 dimerization, Blood, 2012, vol. 119, pp. 1781–1788. https://doi.org/10.1182/blood-2011-11-390922

    Article  CAS  PubMed  Google Scholar 

  9. Cao, X., Sun, Y., Lin, Y., Pan, Y., Farooq, U., Xiang, L., et al., Antiaging of cucurbitane glycosides from fruits of Momordica charantia L., Oxid. Med. Cell. Longevity, 2018, vol. 2018, p. 1538632. https://doi.org/10.1155/2018/1538632

    Article  CAS  Google Scholar 

  10. Chang, C.-H., Yen, M.-C., Liao, S.-H., Hsu, Y.-L., Lai, C.-S., Chang, K.-P., et al., Secreted protein acidic and rich in cysteine (SPARC) enhances cell proliferation, migration, and epithelial mesenchymal transition, and SPARC expression is associated with tumor grade in head and neck cancer, Int. J. Mol. Sci., 2017, vol. 18, p. 1556. https://doi.org/10.3390/ijms18071556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. ChemAxon, Marvin was used for drawing, displaying and characterizing chemical structures, substructures and reactions. Marvin version 21.17.0, ChemAxon. https:// www.chemaxon.com. Accessed October 25, 2022.

  12. Chunhakant, S. and Chaicharoenpong, C., Antityrosinase, antioxidant, and cytotoxic activities of phytochemical constituents from Manilkara zapota L. Bark, Molecules, 2019, vol. 24, p. 2798. https://doi.org/10.3390/molecules24152798

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cooper G.M., Cancer, in The Cell, Cooper, G.M. and Hausman, R.E., Eds., New York: Sinauer Associates Inc., 2018, 8th ed.

    Google Scholar 

  14. Cuesta-Rubio, O., Campo Fernández, M., Márquez Hernández, I., Jaramillo, C.G.J., González, V.H., Montes De Oca Porto, R., et al., Chemical profile and anti-leishmanial activity of three Ecuadorian propolis samples from Quito, Guayaquil and Cotacachi regions, Fitoterapia, 2017, vol. 120, pp. 177–183. https://doi.org/10.1016/j.fitote.2017.06.016

    Article  CAS  PubMed  Google Scholar 

  15. Daina, A., Michielin, O., and Zoete, V., SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep., 2017, vol. 7, pp. 42717. https://doi.org/10.1038/srep42717

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  16. Dandawate, P., Subramaniam, D., Panovich, P., Standing, D., Krishnamachary, B., Kaushik, G., et al., Cucurbitacin B and I inhibits colon cancer growth by targeting the Notch signaling pathway, Sci. Rep., 2020, vol. 10, p. 1290. https://doi.org/10.1038/s41598-020-57940-9

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Dittharot, K., Dakeng, S., Suebsakwong, P., Suksamrarn, A., Patmasiriwat, P., and Promkan, M., Cucurbitacin B induces hypermethylation of oncogenes in breast cancer cells, Planta Med., 2019, vol. 85, pp. 370–378. https://doi.org/10.1055/a-0791-1591

    Article  CAS  PubMed  Google Scholar 

  18. Du, Z., Zhang, S., Lin, Y., Zhou, L., Wang, Y., Yan, G., et al., Momordicoside G regulates macrophage phenotypes to stimulate efficient repair of lung injury and prevent urethane-induced lung carcinoma lesions, Front. Pharmacol., 2019, vol. 10. https://doi.org/10.3389/fphar.2019.00321

  19. Dutta, S., Mahalanobish, S., Saha, S., Ghosh, S., and Sil, P.C., Natural products: an upcoming therapeutic approach to cancer, Food Chem. Toxicol., 2019, vol. 128, pp. 240–255. https://doi.org/10.1016/j.fct.2019.04.012

    Article  CAS  PubMed  Google Scholar 

  20. Dzubak, P., Hajduch, M., Vydra, D., Hustova, A., Kvasnica, M., Biedermann, D., et al., Pharmacological activities of natural triterpenoids and their therapeutic implications, Nat. Prod. Rep., 2006, vol. 23, pp. 394–411. https://doi.org/10.1039/b515312n

    Article  CAS  PubMed  Google Scholar 

  21. Eilken, H.M. and Adams, R.H., Dynamics of endothelial cell behavior in sprouting angiogenesis, Curr. Opin. Cell Biol-., 2010, vol. 22, pp. 617–625. https://doi.org/10.1016/j.ceb.2010.08.010

    Article  CAS  PubMed  Google Scholar 

  22. Erdogan, K. and Eroglu, O., The extract of Momordica charantia inhibits cell proliferation and migration in U87G cells, Biol. Bull. Russ. Acad. Sci., 2022, vol. 49, pp. 31–38. https://doi.org/10.1134/S1062359022130040

    Article  Google Scholar 

  23. Escandell, J.M., Recio, M.-C., Giner, R.M., Máñez, S., Cerdá-Nicolás, M., Merfort, I., et al., Inhibition of delayed-type hypersensitivity by cucurbitacin R through the curbing of lymphocyte proliferation and cytokine expression by means of nuclear factor AT translocation to the nucleus, J. Pharmacol. Exp. Ther., 2010a, vol. 332, pp. 352–363. https://doi.org/10.1124/jpet.109.159327

    Article  CAS  PubMed  Google Scholar 

  24. Escandell, J.M., Recio, M.C., Giner, R.M., Máñez, S., and Ríos, J.L., Bcl-2 is a negative regulator of interleukin-1β secretion in murine macrophages in pharmacological-induced apoptosis, Br. J. Pharmacol., 2010b, vol. 160, pp. 1844–1856. https://doi.org/10.1111/j.1476-5381.2010.00856.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fang, L., Vilas-Boas, J., Chakraborty, S., Potter, Z.E., Register, A.C., Seeliger, M.A., et al., How ATP-competitive inhibitors allosterically modulate tyrosine kinases that contain a Src-like regulatory architecture, ACS Chem. Biol., 2020, vol. 15, pp. 2005–2016. https://doi.org/10.1021/acschembio.0c00429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Farooqi, A.A., Khalid, S., Tahir, F., Sabitaliyevich, U.Y., Yaylim, I., Attar, R., et al., Bitter gourd (Momordica charantia) as a rich source of bioactive components to combat cancer naturally: Are we on the right track to fully unlock its potential as inhibitor of deregulated signaling pathways, Food Chem. Toxicol., 2018, vol. 119, pp. 98–105. https://doi.org/10.1016/j.fct.2018.05.024

    Article  CAS  PubMed  Google Scholar 

  27. Ferrara, N., VEGF and the quest for tumour angiogenesis factors, Nat. Rev. Cancer, 2002, vol. 2, pp. 795–803. https://doi.org/10.1038/nrc909

    Article  CAS  PubMed  Google Scholar 

  28. He, X., Gao, Q., Qiang, Y., Guo, W., and Ma, Y., Cucurbitacin E induces apoptosis of human prostate cancer cells via cofilin-1 and mTORC1, Oncol Lett., 2017, vol. 13, pp. 4905–4910. https://doi.org/10.3892%2Fol.2017.6086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ho, V.C. and Fong, G., Vasculogenesis and angiogenesis in VEGF receptor-1 deficient mice, in VEGF Signaling Methods in Molecular Biology, New York: Humana Press, 2015.

  30. Hohenester, E., Maurer, P., and Timpl, R., Crystal structure of a pair of follistatin-like and EF-hand calcium-binding domains in BM-40, EMBO J., 1997, vol. 16, pp. 3778–3786. https://doi.org/10.1093%2Femboj%2F16.13.3778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hsiao, P.-C., Liaw, C.-C., Hwang, S.-Y., Cheng, H.-L., Zhang, L.-J., Shen, C.-C., et al., Antiproliferative and hypoglycemic cucurbitane-type glycosides from the fruits of Momordica charantia, J. Agric. Food Chem., 2013, vol. 61, pp. 2979–2986. https://doi.org/10.1021/jf3041116

    Article  CAS  PubMed  Google Scholar 

  32. Jagan, M.R.P. and Chinthalapally, V.R., Triterpenoids for cancer prevention and treatment: current status and future prospects, Curr. Pharm. Biotechnol., 2012, vol. 13, pp. 147–155. https://doi.org/10.2174/138920112798868719

    Article  Google Scholar 

  33. Jia, S., Shen, M., Zhang, F., and Xie, J., Recent advances in Momordica charantia: functional components and biological activities, Int. J. Mol. Sci., 2017, vol. 18, p. 2555. https://doi.org/10.3390%2Fijms18122555

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jianguo, F. and Liling, T., SPARC in tumor pathophysiology and as a potential therapeutic target, Curr. Pharm. Design., 2014, vol. 20, pp. 6182–6190. https://doi.org/10.2174/1381612820666140619123255

    Article  CAS  Google Scholar 

  35. Juan, M.E., Wenzel, U., Daniel, H., and Planas, J.M., Erythrodiol, a natural triterpenoid from olives, has antiproliferative and apoptotic activity in HT-29 human adenocarcinoma cells, Mol. Nutr. Food Res., 2008, vol. 52, pp. 595–599. https://doi.org/10.1002/mnfr.200700300

    Article  CAS  PubMed  Google Scholar 

  36. Kaushik, U., Aeri, V., and Mir, S.R., Cucurbitacins—an insight into medicinal leads from nature, Pharmacogn. Rev., 2015, vol. 9, pp. 12–18. https://doi.org/10.4103%2F0973-7847.156314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. KDR Gene (Protein Coding) [Internet]. GeneCards. https://www.genecards.org/cgi-bin/carddisp.pl?gene=KDR. Accessed October 25, 2022.

  38. Klungsaeng, S., Kukongviriyapan, V., Prawan, A., Kongpetch, S., and Senggunprai, L., Cucurbitacin B induces mitochondrial-mediated apoptosis pathway in cholangiocarcinoma cells via suppressing focal adhesion kinase signaling, Naunyn-Schmiedeberg’s Arch. Pharmacol., 2019, vol. 392, pp. 271–278. https://doi.org/10.1007/s00210-018-1584-3

    Article  CAS  Google Scholar 

  39. Koch, S. and Claesson-Welsh, L., Signal transduction by vascular endothelial growth factor receptors, Biochem. J., 2011, vol. 437, no. 2, pp. 169–183. https://doi.org/10.1042/bj20110301

    Article  CAS  PubMed  Google Scholar 

  40. Lane, T.F. and Sage, E.H., The biology of SPARC, a protein that modulates cell-matrix interactions, FASEB J., 1994, vol. 8, pp. 163–173.

    Article  CAS  PubMed  Google Scholar 

  41. Lee, D.H., Iwanski, G.B., and Thoennissen, N.H., Cucurbitacin: ancient compound shedding new light on cancer treatment, Sci. World J., 2010, vol. 10, p. 565972. https://doi.org/10.1100/tsw.2010.44

    Article  CAS  Google Scholar 

  42. Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Delivery Rev., 2001, vol. 46, pp. 3–26. https://doi.org/10.1016/S0169-409X(00)00129-0

    Article  CAS  Google Scholar 

  43. Liu, J., Liu, X., Ma, W., Kou, W., Li, C., and Zhao, J., Anticancer activity of cucurbitacin-A in ovarian cancer cell line SKOV3 involves cell cycle arrest, apoptosis and inhibition of mTOR/PI3K/Akt signaling pathway, J. BUON, 2018, vol. 23, pp. 124–128.

    PubMed  Google Scholar 

  44. Markovic-Mueller, S., Stuttfeld, E., Asthana, M., Weinert, T., Bliven, S., Goldie, K.N., et al., Structure of the full-length VEGFR-1 extracellular domain in complex with VEGF-A, Structure, 2017, vol. 25, pp. 341–352. https://doi.org/10.1016/j.str.2016.12.012

    Article  CAS  PubMed  Google Scholar 

  45. Meng, D., Qiang, S., Lou, L., and Zhao, W., Cytotoxic cucurbitane-type triterpenoids from Elaeocarpus hainanensis, Planta Med., 2008, vol. 74, pp. 1741–1744. https://doi.org/10.1055/s-2008-1081356

    Article  CAS  PubMed  Google Scholar 

  46. Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., et al., AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility, J. Comput. Chem., 2009, vol. 30, pp. 2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pavanelli, A., Mangone, F., and Nagai, M., SPARC (Secreted Protein Acidic and Cysteine-Rich), Atlas Genet. Cytogenet. Oncol. Haematol., 2017, vol. 21, pp. 351–357.

    Google Scholar 

  48. Pecorino L., Molecular Biology of Cancer, United Kingdom: Oxford Univ. Press, 2012, 3rd ed.

    Google Scholar 

  49. Pitchakarn, P., Suzuki, S., Ogawa, K., Pompimon, W., Takahashi, S., Asamoto, M., et al., Induction of G1 arrest and apoptosis in androgen-dependent human prostate cancer by Kuguacin J, a triterpenoid from Momordica charantia leaf, Cancer Lett., 2011, vol. 306, pp. 142–150. https://doi.org/10.1016/j.canlet.2011.02.041

    Article  CAS  PubMed  Google Scholar 

  50. Ramalhete, C., Mulhovo, S., Lage, H., and Ferreira, M.-J.U., Triterpenoids from Momordica balsamina with a collateral sensitivity effect for tackling multidrug resistance in cancer cells, Planta Med., 2018, vol. 84, pp. 1372–1379. https://doi.org/10.1055/a-0651-8141

    Article  CAS  PubMed  Google Scholar 

  51. Roser M., Ritchie H., Cancer: ourworldindata.org. https://ourworldindata.org/cancer. Accessed October 25, 2022.

  52. Saeed, M.E.M., Boulos, J.C., Elhaboub, G., Rigano, D., Saab, A., Loizzo, M.R., et al., Cytotoxicity of cucurbitacin E from Citrullus colocynthis against multidrug-resistant cancer cells, Phytomedicine., 2019, vol. 62, p. 152945. https://doi.org/10.1016/j.phymed.2019.152945

    Article  CAS  PubMed  Google Scholar 

  53. Said, N., Roles of SPARC in urothelial carcinogenesis, progression and metastasis, Oncotarget, 2016, vol. 7, pp. 67574–67585. https://doi.org/10.18632%2Foncotarget.11590

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sallam, A.M, Esmat, A., and Abdel-Naim, A.B., Cucurbitacin-B attenuates CCl4-induced hepatic fibrosis in mice through inhibition of STAT-3, Chem. Biol. Drug Design, 2018, vol. 91, pp. 933–941. https://doi.org/10.1111/cbdd.13160

    Article  CAS  Google Scholar 

  55. Sánchez-León, M.L., Jiménez-Cortegana, C., Cabrera, G., Vermeulen, E.M., de la Cruz-Merino, L., and Sánchez-Margalet, V., The effects of dendritic cell-based vaccines in the tumor microenvironment: Impact on myeloid-derived suppressor cells, Front. Immunol., 2022, vol. 13, p. 1050484. https://doi.org/10.3389/fimmu.2022.1050484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schenone, S., Manetti, F., and Botta, M., Src inhibitors and angiogenesis, Curr. Pharm. Design, 2007, vol. 13, pp. 2118–2128. https://doi.org/10.2174/138161207781039580

    Article  CAS  Google Scholar 

  57. Shahneh, F.Z., Baradaran, B., Zamani, F., and Aghebati-Maleki, L., Tumor angiogenesis and anti-angiogenic therapies, Hum. Antibodies, 2013, vol. 22, pp. 15–19. https://doi.org/10.3233/hab-130267

    Article  CAS  PubMed  Google Scholar 

  58. Siegel, R.L., Miller, K.D., and Jemal, A., Cancer statistics, 2019, Ca—Cancer J. Clin., 2019, vol. 69, pp. 7–34. https://doi.org/10.3322/caac.21551

    Article  PubMed  Google Scholar 

  59. Sinha, S., Khan, S., Shukla, S., Lakra, A.D., Kumar, S., Das, G., et al., Cucurbitacin B inhibits breast cancer metastasis and angiogenesis through VEGF-mediated suppression of FAK/MMP-9 signaling axis, Int. J. Biochem. Cell Biol., 2016, vol. 77, pp. 41–56. https://doi.org/10.1016/j.biocel.2016.05.014

    Article  CAS  PubMed  Google Scholar 

  60. Song, H., Wang, Y., Li, L., Sui, H., Wang, P., and Wang, F., Cucurbitacin E inhibits proliferation and migration of intestinal epithelial cells via activating cofilin, Front. Physiol., 2018, vol. 9, p. 1090. https://doi.org/10.3389%2Ffphys.2018.01090

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sun, J., Blaskovich, M.A., Jove, R., Livingston, S.K., Coppola, D., and Sebti, S.M., Cucurbitacin Q: a selective STAT3 activation inhibitor with potent antitumor activity, Oncogene, 2005, vol. 24, pp. 3236–3245. https://doi.org/10.1038/sj.onc.1208470

    Article  CAS  PubMed  Google Scholar 

  62. Swiss Institute of Biotechnology, SwissADME. http://www. swissadme.ch/. Accessed October 25, 2022.

  63. The Human Protein Atlas, FLT1 Gene, The Human Protein Atlas Webpage. https://www.proteinatlas.org/ENSG00000102755-FLT1. Accessed October 25, 2022.

  64. Thermo Fisher Scientific, The Role of ADME and Toxicology Studies in Drug Discovery and Development. https://www.thermofisher.com/blog/connectedlab/the-role-of-adme-toxicology-studies-in-drug-discovery-development/. Accessed October 25, 2022.

  65. Trott, O. and Olson, A.J., AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem., 2010, vol. 31, pp. 455–461. https://doi.org/10.1002%2Fjcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Turner, A., Bond, D.R., Vuong, Q.V., Chalmers, A., Beckett, E.L., Weidenhofer, J., et al., Elaeocarpus reticulatus fruit extracts reduce viability and induce apoptosis in pancreatic cancer cells in vitro, Mol. Biol. Rep., 2020, vol. 47, pp. 2073–2084. https://doi.org/10.1007/s11033-020-05307-8

    Article  CAS  PubMed  Google Scholar 

  67. Ul Haq, F., Ali, A., Khan, M.N., Shah, S.M.Z., Kandel, R.C., Aziz, N., et al., Metabolite profiling and quantitation of cucurbitacins in Cucurbitaceae plants by liquid chromatography coupled to tandem mass spectrometry, Sci. Rep., 2019, vol. 9, p. 15992. https://doi.org/10.1038/s41598-019-52404-1

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  68. Wang, W.-D., Liu, Y., Su, Y., Xiong, X.-Z., Shang, D., Xu, J.-J., et al., Apoptotic effects of cucurbitacin A in A-549 lung carcinoma cells is mediated via G2/M cell cycle arrest and M-Tor/Pi3k/Akt signalling pathway, Afr. J. Tradit. Complement. Altern. Med., 2017, vol. 14, pp. 75–82. https://doi.org/10.21010/ajtcam.v14i2.9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang, X., Sun, W., Cao, J., Qu, H., Bi, X., and Zhao, Y., Structures of new triterpenoids and cytotoxicity activities of the isolated major compounds from the fruit of Momordica charantia L., J. Agric. Food Chem., 2012, vol. 60, pp. 3927–3933. https://doi.org/10.1021/jf204208y

    Article  CAS  PubMed  Google Scholar 

  70. Weddell, J.C., Chen, S., and Imoukhuede, P.I., VEGFR1 promotes cell migration and proliferation through PLCγ and PI3K pathways, npj Syst. Biol. Appl., 2017, vol. 4, p. 1. https://doi.org/10.1038/s41540-017-0037-9

    Article  Google Scholar 

  71. Wu, D., Wang, Z., Lin, M., Shang, Y., Wang, F., Zhou, J., et al., In vitro and in vivo antitumor activity of cucurbitacin C, a novel natural product from cucumber, Front. Pharmacol., 2019, vol. 10, p. 1287. https://doi.org/10.3389%2Ffphar.2019.01287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yao, X., Lu, B., Lü, C., Bai, Q., Yan, D., and Xu, H., Taraxerol induces cell apoptosis through a mitochondria-mediated pathway in HeLa cells, Cell J., 2017, vol. 19, pp. 512–519. https://doi.org/10.22074%2Fcellj.2017.4543

    PubMed Central  Google Scholar 

  73. Zhang, J., Huang, Y., Kikuchi, T., Tokuda, H., Suzuki, N., Inafuku, K.-İ., et al., Cucurbitane triterpenoids from the leaves of Momordica charantia, and their cancer chemopreventive effects and cytotoxicities, Chem. Biodiversity, 2012, vol. 9, pp. 428–440. https://doi.org/10.1002/cbdv.201100142

    Article  CAS  Google Scholar 

  74. Zhang, M., Tian, J., Wang, R., Song, M., Zhao, R., Chen, H., Liu, K., Shim, J.H., Zhu, F., Dong, Z., and Lee, M.H., Dasatinib inhibits lung cancer cell growth and patient derived tumor growth in mice by targeting LIMK1, Front. Cell Dev. Biol., 2020, vol. 8, p. 556532. https://doi.org/10.3389/fcell.2020.556532

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was presented at the “3rd International conference on Natural Products for Cancer Prevention and Therapy,” Kayseri, Turkey, 2019, also all results about VEGFR’s and SPARC proteins presented in this article belong to the master’s thesis of Büşra Sevim.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Eroğlu.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This article does not contain any in vitro or in vivo involving with animals or human participants performed by any of the authors.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevim, B., Eroğlu, O. Evaluation of Interactions of Triterpenes in M. charantia with Proteins Involved in Vascularization in In Silico. Biol Bull Russ Acad Sci 50 (Suppl 3), S325–S337 (2023). https://doi.org/10.1134/S1062359022602646

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359022602646

Keywords:

Navigation